Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
buoyantSimpleFoam
Group
grpHeatTransferSolvers
Description
Steady-state solver for buoyant, turbulent flow of compressible fluids,
including radiation, for ventilation and heat-transfer.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "rhoThermo.H"
#include "turbulentFluidThermoModel.H"
#include "radiationModel.H"
#include "simpleControl.H"
#include "fvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Steady-state solver for buoyant, turbulent fluid flow"
" of compressible fluids, including radiation."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
{
#include "UEqn.H"
#include "EEqn.H"
#include "pEqn.H"
}
turbulence->correct();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<rhoThermo> pThermo(rhoThermo::New(mesh));
rhoThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
thermo.rho()
);
volScalarField& p = thermo.p();
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// Force p_rgh to be consistent with p
p_rgh = p - rho*gh;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
simple.dict(),
pRefCell,
pRefValue
);
mesh.setFluxRequired(p_rgh.name());
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
dimensionedScalar totalVolume = sum(mesh.V());
#include "createMRF.H"
#include "createRadiationModel.H"
const dimensionedScalar rhoMax("rhoMax", dimDensity, GREAT, simple.dict());
const dimensionedScalar rhoMin("rhoMin", dimDensity, Zero, simple.dict());
#include "createFvOptions.H"
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
tUEqn.clear();
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(rho*HbyA)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
bool closedVolume = adjustPhi(phiHbyA, U, p_rgh);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAUf, MRF);
dimensionedScalar compressibility = fvc::domainIntegrate(psi);
bool compressible = (compressibility.value() > SMALL);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve();
if (simple.finalNonOrthogonalIter())
{
// Calculate the conservative fluxes
phi = phiHbyA - p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rhorAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
p = p_rgh + rho*gh;
#include "continuityErrs.H"
// For closed-volume cases adjust the pressure level
// to obey overall mass continuity
if (closedVolume)
{
if(!compressible)
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
}
else
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
p_rgh = p - rho*gh;
}
rho = thermo.rho();
rho.relax();
Info<< "rho min/max : " << min(rho).value() << " " << max(rho).value()
<< endl;
}
fluid/compressibleCourantNo.C
solid/solidRegionDiffNo.C
chtMultiRegionFoam.C
EXE = $(FOAM_APPBIN)/chtMultiRegionFoam
EXE_INC = \
-I./fluid \
-I./solid \
-I./porousFluid \
-I./porousSolid \
-I./include \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \
-I$(LIB_SRC)/ODE/lnInclude \
-I$(LIB_SRC)/combustionModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionFaModels\lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lreactionThermophysicalModels \
-lsolidThermo \
-lchemistryModel \
-lODE \
-lcombustionModels \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lradiationModels \
-lregionModels \
-lregionFaModels
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2017-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
chtMultiRegionFoam
Group
grpHeatTransferSolvers
Description
Transient solver for buoyant, turbulent fluid flow and solid heat
conduction with conjugate heat transfer between solid and fluid regions.
It handles secondary fluid or solid circuits which can be coupled
thermally with the main fluid region. i.e radiators, etc.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "turbulentFluidThermoModel.H"
#include "rhoReactionThermo.H"
#include "CombustionModel.H"
#include "fixedGradientFvPatchFields.H"
#include "regionProperties.H"
#include "compressibleCourantNo.H"
#include "solidRegionDiffNo.H"
#include "solidThermo.H"
#include "radiationModel.H"
#include "fvOptions.H"
#include "coordinateSystem.H"
#include "loopControl.H"
#include "pressureControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for buoyant, turbulent fluid flow and solid heat"
" conduction with conjugate heat transfer"
" between solid and fluid regions."
);
#define NO_CONTROL
#define CREATE_MESH createMeshesPostProcess.H
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMeshes.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "createTimeControls.H"
#include "readSolidTimeControls.H"
#include "compressibleMultiRegionCourantNo.H"
#include "solidRegionDiffusionNo.H"
#include "setInitialMultiRegionDeltaT.H"
#include "createCoupledRegions.H"
while (runTime.run())
{
#include "readTimeControls.H"
#include "readSolidTimeControls.H"
#include "readPIMPLEControls.H"
#include "compressibleMultiRegionCourantNo.H"
#include "solidRegionDiffusionNo.H"
#include "setMultiRegionDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
if (nOuterCorr != 1)
{
forAll(fluidRegions, i)
{
#include "storeOldFluidFields.H"
}
}
// --- PIMPLE loop
for (int oCorr=0; oCorr<nOuterCorr; ++oCorr)
{
const bool finalIter = (oCorr == nOuterCorr-1);
forAll(fluidRegions, i)
{
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionPIMPLEControls.H"
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionPIMPLEControls.H"
#include "solveSolid.H"
}
if (coupled)
{
Info<< "\nSolving energy coupled regions " << endl;
fvMatrixAssemblyPtr->solve();
#include "correctThermos.H"
forAll(fluidRegions, i)
{
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionPIMPLEControls.H"
if (!frozenFlow)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
#include "pEqn.H"
}
turbulence.correct();
}
rho = thermo.rho();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
}
fvMatrixAssemblyPtr->clear();
}
// Additional loops for energy solution only
if (!oCorr && nOuterCorr > 1)
{
loopControl looping(runTime, pimple, "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionPIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionPIMPLEControls.H"
#include "solveSolid.H"
}
if (coupled)
{
Info<< "\nSolving energy coupled regions " << endl;
fvMatrixAssemblyPtr->solve();
#include "correctThermos.H"
forAll(fluidRegions, i)
{
#include "setRegionFluidFields.H"
rho = thermo.rho();
}
fvMatrixAssemblyPtr->clear();
}
}
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
chtMultiRegionSimpleFoam.C
EXE = $(FOAM_APPBIN)/chtMultiRegionSimpleFoam
EXE_INC = \
-I.. \
-I./fluid \
-I./solid \
-I../solid \
-I./../include \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
-I$(LIB_SRC)/regionFaModels/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lsolidThermo \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lradiationModels \
-lfvOptions \
-lfaOptions \
-lregionModels \
-lsampling \
-lregionFaModels
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2017-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
chtMultiRegionSimpleFoam
Group
grpHeatTransferSolvers
Description
Steady-state solver for buoyant, turbulent fluid flow and solid heat
conduction with conjugate heat transfer between solid and fluid regions.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "rhoThermo.H"
#include "turbulentFluidThermoModel.H"
#include "fixedGradientFvPatchFields.H"
#include "regionProperties.H"
#include "solidThermo.H"
#include "radiationModel.H"
#include "fvOptions.H"
#include "coordinateSystem.H"
#include "loopControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Steady-state solver for buoyant, turbulent fluid flow and solid heat"
" conduction with conjugate heat transfer"
" between solid and fluid regions."
);
#define NO_CONTROL
#define CREATE_MESH createMeshesPostProcess.H
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMeshes.H"
#include "createFields.H"
#include "createCoupledRegions.H"
#include "initContinuityErrs.H"
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionSIMPLEControls.H"
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionSIMPLEControls.H"
#include "solveSolid.H"
}
if (coupled)
{
Info<< "\nSolving energy coupled regions" << endl;
fvMatrixAssemblyPtr->solve();
#include "correctThermos.H"
forAll(fluidRegions, i)
{
#include "setRegionFluidFields.H"
#include "readSolidMultiRegionSIMPLEControls.H"
if (!frozenFlow)
{
#include "pEqn.H"
turb.correct();
}
}
fvMatrixAssemblyPtr->clear();
}
// Additional loops for energy solution only
{
loopControl looping(runTime, "SIMPLE", "energyCoupling");
while (looping.loop())
{
Info<< nl << looping << nl;
forAll(fluidRegions, i)
{
Info<< "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;
#include "setRegionFluidFields.H"
#include "readFluidMultiRegionSIMPLEControls.H"
frozenFlow = true;
#include "solveFluid.H"
}
forAll(solidRegions, i)
{
Info<< "\nSolving for solid region "
<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "readSolidMultiRegionSIMPLEControls.H"
#include "solveSolid.H"
}
if (coupled)
{
Info<< "\nSolving energy coupled regions.. " << endl;
fvMatrixAssemblyPtr->solve();
#include "correctThermos.H"
fvMatrixAssemblyPtr->clear();
}
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalarField& he = thermo.he();
fvScalarMatrix EEqn
(
fvm::div(phi, he)
+ (
he.name() == "e"
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
)
- fvm::laplacian(turb.alphaEff(), he)
==
rho*(U&g)
+ rad.Sh(thermo, he)
+ fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
if (coupled)
{
fvMatrixAssemblyPtr->addFvMatrix(EEqn);
}
else
{
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
rad.correct();
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
<< max(thermo.T()).value() << endl;
}
}
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
UEqn =
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turb.divDevRhoReff(U)
==
fvOptions(rho, U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (momentumPredictor)
{
solve
(
UEqn
==
fvc::reconstruct
(
(
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
)
);
fvOptions.correct(U);
}
{
dimensionedScalar totalMass = fvc::domainIntegrate(rho);
scalar sumLocalContErr =
(
fvc::domainIntegrate(mag(rho - thermo.rho()))/totalMass
).value();
scalar globalContErr =
(
fvc::domainIntegrate(rho - thermo.rho())/totalMass
).value();
cumulativeContErr[i] += globalContErr;
Info<< "time step continuity errors (" << mesh.name() << ")"
<< ": sum local = " << sumLocalContErr
<< ", global = " << globalContErr
<< ", cumulative = " << cumulativeContErr[i]
<< endl;
}
scalar CoNum = -GREAT;
forAll(fluidRegions, regionI)
{
CoNum = max
(
compressibleCourantNo
(
fluidRegions[regionI],
runTime,
rhoFluid[regionI],
phiFluid[regionI]
),
CoNum
);
}
// Initialise fluid field pointer lists
PtrList<rhoThermo> thermoFluid(fluidRegions.size());
PtrList<volScalarField> rhoFluid(fluidRegions.size());
PtrList<volVectorField> UFluid(fluidRegions.size());
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
PtrList<uniformDimensionedScalarField> hRefFluid(fluidRegions.size());
PtrList<volScalarField> ghFluid(fluidRegions.size());
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
PtrList<volScalarField> p_rghFluid(fluidRegions.size());
PtrList<radiation::radiationModel> radiation(fluidRegions.size());
List<scalar> initialMassFluid(fluidRegions.size());
List<label> pRefCellFluid(fluidRegions.size(), -1);
List<scalar> pRefValueFluid(fluidRegions.size(), Zero);
List<bool> frozenFlowFluid(fluidRegions.size(), false);
PtrList<dimensionedScalar> rhoMax(fluidRegions.size());
PtrList<dimensionedScalar> rhoMin(fluidRegions.size());
PtrList<IOMRFZoneList> MRFfluid(fluidRegions.size());
PtrList<fv::options> fluidFvOptions(fluidRegions.size());
PtrList<fvVectorMatrix> UEqFluid(fluidRegions.size());
const uniformDimensionedVectorField& g = meshObjects::gravity::New(runTime);
// Populate fluid field pointer lists
forAll(fluidRegions, i)
{
Info<< "*** Reading fluid mesh thermophysical properties for region "
<< fluidRegions[i].name() << nl << endl;
Info<< " Adding to thermoFluid\n" << endl;
thermoFluid.set
(
i,
rhoThermo::New(fluidRegions[i]).ptr()
);
Info<< " Adding to rhoFluid\n" << endl;
rhoFluid.set
(
i,
new volScalarField
(
IOobject
(
"rho",
runTime.timeName(),
fluidRegions[i],
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
thermoFluid[i].rho()
)
);
Info<< " Adding to UFluid\n" << endl;
UFluid.set
(
i,
new volVectorField
(
IOobject
(
"U",
runTime.timeName(),
fluidRegions[i],
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
fluidRegions[i]
)
);
Info<< " Adding to phiFluid\n" << endl;
phiFluid.set
(
i,
new surfaceScalarField
(
IOobject
(
"phi",
runTime.timeName(),
fluidRegions[i],
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(rhoFluid[i]*UFluid[i])
& fluidRegions[i].Sf()
)
);
Info<< " Adding to hRefFluid\n" << endl;
hRefFluid.set
(
i,
new uniformDimensionedScalarField
(
IOobject
(
"hRef",
runTime.constant(),
fluidRegions[i],
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
dimensionedScalar("hRef", dimLength, Zero) // uses name
)
);
dimensionedScalar ghRef
(
mag(g.value()) > SMALL
? g & (cmptMag(g.value())/mag(g.value()))*hRefFluid[i]
: dimensionedScalar("ghRef", g.dimensions()*dimLength, 0)
);
Info<< " Adding to ghFluid\n" << endl;
ghFluid.set
(
i,
new volScalarField
(
"gh",
(g & fluidRegions[i].C()) - ghRef
)
);
Info<< " Adding to ghfFluid\n" << endl;
ghfFluid.set
(
i,
new surfaceScalarField
(
"ghf",
(g & fluidRegions[i].Cf()) - ghRef
)
);
Info<< " Adding to turbulence\n" << endl;
turbulence.set
(
i,
compressible::turbulenceModel::New
(
rhoFluid[i],
UFluid[i],
phiFluid[i],
thermoFluid[i]
).ptr()
);
p_rghFluid.set
(
i,
new volScalarField
(
IOobject
(
"p_rgh",
runTime.timeName(),
fluidRegions[i],
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
fluidRegions[i]
)
);
// Force p_rgh to be consistent with p
p_rghFluid[i] = thermoFluid[i].p() - rhoFluid[i]*ghFluid[i];
fluidRegions[i].setFluxRequired(p_rghFluid[i].name());
radiation.set
(
i,
radiation::radiationModel::New(thermoFluid[i].T())
);
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
const dictionary& simpleDict =
fluidRegions[i].solutionDict().subDict("SIMPLE");
setRefCell
(
thermoFluid[i].p(),
p_rghFluid[i],
simpleDict,
pRefCellFluid[i],
pRefValueFluid[i]
);
simpleDict.readIfPresent("frozenFlow", frozenFlowFluid[i]);
rhoMax.set
(
i,
new dimensionedScalar("rhoMax", dimDensity, GREAT, simpleDict)
);
rhoMin.set
(
i,
new dimensionedScalar("rhoMin", dimDensity, Zero, simpleDict)
);
Info<< " Adding MRF\n" << endl;
MRFfluid.set
(
i,
new IOMRFZoneList(fluidRegions[i])
);
Info<< " Adding fvOptions\n" << endl;
fluidFvOptions.set
(
i,
new fv::options(fluidRegions[i])
);
UEqFluid.set
(
i,
new fvVectorMatrix(UFluid[i], dimForce)
);
turbulence[i].validate();
}
const wordList fluidNames(rp["fluid"]);
PtrList<fvMesh> fluidRegions(fluidNames.size());
forAll(fluidNames, i)
{
Info<< "Create fluid mesh for region " << fluidNames[i]
<< " for time = " << runTime.timeName() << nl << endl;
fluidRegions.set
(
i,
new fvMesh
(
IOobject
(
fluidNames[i],
runTime.timeName(),
runTime,
IOobject::MUST_READ
)
)
);
}
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
//tUEqn.clear();
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(rho*HbyA)
);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
bool closedVolume = adjustPhi(phiHbyA, U, p_rgh);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, rho, U, phiHbyA, rhorAUf, MRF);
dimensionedScalar compressibility = fvc::domainIntegrate(psi);
bool compressible = (compressibility.value() > SMALL);
// Solve pressure
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve();
if (nonOrth == nNonOrthCorr)
{
// Calculate the conservative fluxes
phi = phiHbyA - p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rhorAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
p = p_rgh + rho*gh;
#include "continuityErrs.H"
// For closed-volume cases adjust the pressure level
// to obey overall mass continuity
if (closedVolume)
{
if (!compressible)
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
}
else
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/compressibility;
}
p_rgh = p - rho*gh;
}
rho = thermo.rho();
rho = max(rho, rhoMin[i]);
rho = min(rho, rhoMax[i]);
rho.relax();
Info<< "Min/max rho:" << min(rho).value() << ' '
<< max(rho).value() << endl;
}
const dictionary& simple = fluidRegions[i].solutionDict().subDict("SIMPLE");
const int nNonOrthCorr =
simple.getOrDefault<int>("nNonOrthogonalCorrectors", 0);
const bool momentumPredictor =
simple.getOrDefault("momentumPredictor", true);
const fvMesh& mesh = fluidRegions[i];
rhoThermo& thermo = thermoFluid[i];
thermo.validate(args.executable(), "h", "e");
volScalarField& rho = rhoFluid[i];
volVectorField& U = UFluid[i];
surfaceScalarField& phi = phiFluid[i];
compressible::turbulenceModel& turb = turbulence[i];
volScalarField& p = thermo.p();
const volScalarField& psi = thermo.psi();
volScalarField& p_rgh = p_rghFluid[i];
const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];
radiation::radiationModel& rad = radiation[i];
IOMRFZoneList& MRF = MRFfluid[i];
fv::options& fvOptions = fluidFvOptions[i];
fvVectorMatrix& UEqn = UEqFluid[i];
const dimensionedScalar initialMass
(
"initialMass",
dimMass,
initialMassFluid[i]
);
bool frozenFlow = frozenFlowFluid[i];
const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment