Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
EXE_INC = \
-I$(LIB_SRC)/finiteArea/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/cfdTools/general/lnInclude
EXE_LIBS = \
-lfiniteArea \
-lfiniteVolume \
-lmeshTools
Info<< "Reading field Cs" << endl;
areaScalarField Cs
(
IOobject
(
"Cs",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
aMesh
);
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Reading diffusivity D\n" << endl;
dimensionedScalar Ds("Ds", dimViscosity, transportProperties);
areaVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
aMesh
);
edgeScalarField phis
(
IOobject
(
"phis",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearEdgeInterpolate(Us) & aMesh.Le()
);
// Create Finite Area mesh
faMesh aMesh(mesh);
// Create volume-to surface mapping object
volSurfaceMapping vsm(aMesh);
volScalarField Cvf
(
IOobject
(
"Cvf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless/dimLength, Zero)
);
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
//Cvf.write();
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector(dimVelocity, Zero)
);
vsm.mapToVolume(Us, U.boundaryFieldRef());
//U.write();
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfactantFoam
Group
grpFiniteAreaSolvers
Description
Passive scalar transport finiteArea equation solver.
\heading Solver details
The equation is given by:
\f[
\ddt{Cs} + \div \left(\vec{U} Cs\right) - \div \left(D_T \grad Cs \right)
= 0
\f]
Where:
\vartable
Cs | Passive scalar
Ds | Diffusion coefficient
\endvartable
\heading Required fields
\plaintable
Cs | Passive scalar
Us | Velocity [m/s]
\endplaintable
Author
Zeljko Tukovic, FMENA
Hrvoje Jasak, Wikki Ltd.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "faCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Passive scalar transport finiteArea equation solver."
);
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFaMesh.H"
#include "createFaFields.H"
#include "createVolFields.H"
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << endl;
faScalarMatrix CsEqn
(
fam::ddt(Cs)
+ fam::div(phis, Cs)
- fam::laplacian(Ds, Cs)
);
CsEqn.solve();
if (runTime.writeTime())
{
vsm.mapToVolume(Cs, Cvf.boundaryFieldRef());
runTime.write();
}
Info<< "Total mass of surfactant: "
<< sum(Cs.internalField()*aMesh.S()) << endl;
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
buoyantBoussinesqPimpleFoam.C
EXE = $(FOAM_APPBIN)/buoyantBoussinesqPimpleFoam
EXE_INC = \
-I../buoyantBoussinesqSimpleFoam \
-I../../incompressible/pimpleFoam \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-ldynamicMesh \
-ldynamicFvMesh \
-lsampling \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lradiationModels \
-latmosphericModels
{
alphat = turbulence->nut()/Prt;
alphat.correctBoundaryConditions();
volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);
fvScalarMatrix TEqn
(
fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(alphaEff, T)
==
radiation->ST(rhoCpRef, T)
+ fvOptions(T)
);
TEqn.relax();
fvOptions.constrain(TEqn);
TEqn.solve();
radiation->correct();
fvOptions.correct(T);
rhok = 1.0 - beta*(T - TRef);
}
// Solve the momentum equation
MRF.correctBoundaryVelocity(U);
fvVectorMatrix UEqn
(
fvm::ddt(U) + fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve
(
UEqn
==
fvc::reconstruct
(
(
- ghf*fvc::snGrad(rhok)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
)
);
fvOptions.correct(U);
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
buoyantBoussinesqPimpleFoam
Group
grpHeatTransferSolvers
Description
Transient solver for buoyant, turbulent flow of incompressible fluids,
with optional mesh motion and mesh topology changes.
Uses the Boussinesq approximation:
\f[
rho_{k} = 1 - beta(T - T_{ref})
\f]
where:
\f$ rho_{k} \f$ = the effective (driving) kinematic density
beta = thermal expansion coefficient [1/K]
T = temperature [K]
\f$ T_{ref} \f$ = reference temperature [K]
Valid when:
\f[
\frac{beta(T - T_{ref})}{rho_{ref}} << 1
\f]
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "radiationModel.H"
#include "CorrectPhi.H"
#include "fvOptions.H"
#include "pimpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for buoyant, turbulent flow"
" of incompressible fluids, with optional mesh"
" motion and mesh topology changes.\n"
"Uses the Boussinesq approximation."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "createUfIfPresent.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
// Do any mesh changes
mesh.controlledUpdate();
if (mesh.changing())
{
MRF.update();
if (correctPhi)
{
// Calculate absolute flux
// from the mapped surface velocity
phi = mesh.Sf() & Uf();
#include "correctPhi.H"
// Make the flux relative to the mesh motion
fvc::makeRelative(phi, U);
}
if (checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
}
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
laminarTransport.correct();
turbulence->correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading thermophysical properties\n" << endl;
Info<< "Reading field T\n" << endl;
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
#include "readTransportProperties.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
// Kinematic density for buoyancy force
volScalarField rhok
(
IOobject
(
"rhok",
runTime.timeName(),
mesh
),
1.0 - beta*(T - TRef)
);
// kinematic turbulent thermal thermal conductivity m2/s
Info<< "Reading field alphat\n" << endl;
volScalarField alphat
(
IOobject
(
"alphat",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rhok*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
pimple.dict(),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
}
mesh.setFluxRequired(p_rgh.name());
#include "createMRF.H"
#include "createIncompressibleRadiationModel.H"
#include "createFvOptions.H"
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(rAUf*fvc::ddtCorr(U, phi))
+ phig
);
MRF.makeRelative(phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
// Calculate the conservative fluxes
phi = phiHbyA - p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
// Correct Uf if the mesh is moving
fvc::correctUf(Uf, U, phi);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
}
}
#include "continuityErrs.H"
p = p_rgh + rhok*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rhok*gh;
}
}
buoyantBoussinesqSimpleFoam.C
EXE = $(FOAM_APPBIN)/buoyantBoussinesqSimpleFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/thermophysicalModels/radiation/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lradiationModels \
-latmosphericModels
{
alphat = turbulence->nut()/Prt;
alphat.correctBoundaryConditions();
volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);
fvScalarMatrix TEqn
(
fvm::div(phi, T)
- fvm::laplacian(alphaEff, T)
==
radiation->ST(rhoCpRef, T)
+ fvOptions(T)
);
TEqn.relax();
fvOptions.constrain(TEqn);
TEqn.solve();
radiation->correct();
fvOptions.correct(T);
rhok = 1.0 - beta*(T - TRef);
}
// Solve the momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (simple.momentumPredictor())
{
solve
(
UEqn
==
fvc::reconstruct
(
(
- ghf*fvc::snGrad(rhok)
- fvc::snGrad(p_rgh)
)*mesh.magSf()
)
);
fvOptions.correct(U);
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
buoyantBoussinesqSimpleFoam
Group
grpHeatTransferSolvers
Description
Steady-state solver for buoyant, turbulent flow of incompressible fluids.
Uses the Boussinesq approximation:
\f[
rho_{k} = 1 - beta(T - T_{ref})
\f]
where:
\f$ rho_{k} \f$ = the effective (driving) density
beta = thermal expansion coefficient [1/K]
T = temperature [K]
\f$ T_{ref} \f$ = reference temperature [K]
Valid when:
\f[
\frac{beta(T - T_{ref})}{rho_{ref}} << 1
\f]
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "radiationModel.H"
#include "fvOptions.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Steady-state solver for buoyant, turbulent flow"
" of incompressible fluids."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
{
#include "UEqn.H"
#include "TEqn.H"
#include "pEqn.H"
}
laminarTransport.correct();
turbulence->correct();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "Reading thermophysical properties\n" << endl;
Info<< "Reading field T\n" << endl;
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
#include "readTransportProperties.H"
Info<< "Creating turbulence model\n" << endl;
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
// Kinematic density for buoyancy force
volScalarField rhok
(
IOobject
(
"rhok",
runTime.timeName(),
mesh
),
1.0 - beta*(T - TRef)
);
// kinematic turbulent thermal thermal conductivity m2/s
Info<< "Reading field alphat\n" << endl;
volScalarField alphat
(
IOobject
(
"alphat",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh + rhok*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
simple.dict(),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
}
mesh.setFluxRequired(p_rgh.name());
#include "createMRF.H"
#include "createIncompressibleRadiationModel.H"
#include "createFvOptions.H"
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
tUEqn.clear();
surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
);
MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p_rgh);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqn
(
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
);
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
p_rghEqn.solve();
if (simple.finalNonOrthogonalIter())
{
// Calculate the conservative fluxes
phi = phiHbyA - p_rghEqn.flux();
// Explicitly relax pressure for momentum corrector
p_rgh.relax();
// Correct the momentum source with the pressure gradient flux
// calculated from the relaxed pressure
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
#include "continuityErrs.H"
p = p_rgh + rhok*gh;
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rhok*gh;
}
}
singlePhaseTransportModel laminarTransport(U, phi);
// Thermal expansion coefficient [1/K]
dimensionedScalar beta
(
"beta",
dimless/dimTemperature,
laminarTransport
);
// Reference temperature [K]
dimensionedScalar TRef("TRef", dimTemperature, laminarTransport);
// Laminar Prandtl number
dimensionedScalar Pr("Pr", dimless, laminarTransport);
// Turbulent Prandtl number
dimensionedScalar Prt("Prt", dimless, laminarTransport);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment