Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2015 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\defgroup grpElectroMagneticsSolvers Electro-magnetics solvers
@{
\ingroup grpSolvers
This group contains electro-magnetics solvers.
@}
\*---------------------------------------------------------------------------*/
electrostaticFoam.C
EXE = $(FOAM_APPBIN)/electrostaticFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools
Info<< "Reading physicalProperties\n" << endl;
IOdictionary physicalProperties
(
IOobject
(
"physicalProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
dimensionedScalar epsilon0
(
"epsilon0",
dimensionSet(-1, -3, 4, 0, 0, 2, 0),
physicalProperties
);
dimensionedScalar k
(
"k",
dimensionSet(-1, 0, 2, 0, 0, 1, 0),
physicalProperties
);
Info<< "Reading field phi\n" << endl;
volScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Calculating field rhoFlux\n" << endl;
surfaceScalarField rhoFlux
(
IOobject
(
"rhoFlux",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
-k*mesh.magSf()*fvc::snGrad(phi)
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
electrostaticFoam
Group
grpElectroMagneticsSolvers
Description
Solver for electrostatics.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for electrostatics."
);
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting iteration loop\n" << endl;
while (runTime.loop())
{
Info<< "Iteration = " << runTime.timeName() << nl << endl;
solve
(
fvm::laplacian(phi) + rho/epsilon0
);
rhoFlux = -k*mesh.magSf()*fvc::snGrad(phi);
solve
(
fvm::ddt(rho) + fvm::div(rhoFlux, rho)
);
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
magneticFoam.C
EXE = $(FOAM_APPBIN)/magneticFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools
Info<< "Reading field psi\n" << endl;
volScalarField psi
(
IOobject
(
"psi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
List<magnet> magnets(transportProperties.lookup("magnets"));
surfaceScalarField murf
(
IOobject
(
"murf",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("one", dimless, 1.0)
);
surfaceScalarField Mrf
(
IOobject
(
"Mrf",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dimensionSet(0, 1, 0, 0, 0, 1, 0), Zero)
);
Mrf.setOriented(true);
forAll(magnets, i)
{
label magnetZonei = mesh.faceZones().findZoneID(magnets[i].name());
if (magnetZonei == -1)
{
FatalIOErrorInFunction(transportProperties)
<< "Cannot find faceZone for magnet " << magnets[i].name()
<< exit(FatalIOError);
}
const labelList& faces = mesh.faceZones()[magnetZonei];
const scalar muri = magnets[i].mur();
const scalar Mri = magnets[i].Mr().value();
const vector& orientationi = magnets[i].orientation();
const surfaceVectorField& Sf = mesh.Sf();
for (const label facei : faces)
{
murf[facei] = muri;
Mrf[facei] = Mri*(orientationi & Sf[facei]);
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::magnet
Description
Class to hold the defining data for a permanent magnet, in particular
the name, relative permeability and remanence.
SourceFiles
\*---------------------------------------------------------------------------*/
#ifndef magnet_H
#define magnet_H
#include "dimensionedVector.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// Forward Declarations
class magnet;
Istream& operator>>(Istream&, magnet&);
Ostream& operator<<(Ostream&, const magnet&);
/*---------------------------------------------------------------------------*\
Class magnet Declaration
\*---------------------------------------------------------------------------*/
class magnet
{
// Private data
word name_;
scalar relativePermeability_;
dimensionedScalar remanence_;
vector orientation_;
public:
// Constructors
//- Null constructor for lists
inline magnet()
:
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), 0),
orientation_(Zero)
{}
//- Construct from components
inline magnet
(
const word& name,
const scalar mur,
const scalar Mr,
const vector& orientation
)
:
name_(name),
relativePermeability_(mur),
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), Mr),
orientation_(orientation)
{}
//- Construct from Istream
inline magnet(Istream& is)
:
remanence_("Mr", dimensionSet(0, -1, 0, 0, 0, 1, 0), 0),
orientation_(Zero)
{
is >> *this;
}
// Member Functions
//- Return name
inline const word& name() const
{
return name_;
}
//- Return relative permeability
inline scalar mur() const
{
return relativePermeability_;
}
//- Return remenance
inline const dimensionedScalar& Mr() const
{
return remanence_;
}
//- Return orientation
inline const vector& orientation() const
{
return orientation_;
}
// IOstream operators
inline friend Istream& operator>>(Istream& is, magnet& m)
{
is.readBegin("magnet");
is >> m.name_
>> m.relativePermeability_
>> m.remanence_.value()
>> m.orientation_;
is.readEnd("magnet");
is.check(FUNCTION_NAME);
return is;
}
inline friend Ostream& operator<<(Ostream& os, const magnet& m)
{
os << token::BEGIN_LIST
<< m.name_ << token::SPACE
<< m.relativePermeability_ << token::SPACE
<< m.remanence_.value()
<< m.orientation_
<< token::END_LIST;
return os;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2015 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
magneticFoam
Group
grpElectroMagneticsSolvers
Description
Solver for the magnetic field generated by permanent magnets.
A Poisson's equation for the magnetic scalar potential psi is solved
from which the magnetic field intensity H and magnetic flux density B
are obtained. The paramagnetic particle force field (H dot grad(H))
is optionally available.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "OSspecific.H"
#include "magnet.H"
#include "electromagneticConstants.H"
#include "simpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for the magnetic field generated by permanent magnets."
);
argList::addBoolOption
(
"noH",
"Do not write the magnetic field intensity field"
);
argList::addBoolOption
(
"noB",
"Do not write the magnetic flux density field"
);
argList::addBoolOption
(
"HdotGradH",
"Write the paramagnetic particle force field"
);
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
simpleControl simple(mesh);
#include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "Calculating the magnetic field potential" << endl;
++runTime;
while (simple.correctNonOrthogonal())
{
solve(fvm::laplacian(murf, psi) + fvc::div(murf*Mrf));
}
psi.write();
if (!args.found("noH") || args.found("HdotGradH"))
{
volVectorField H
(
IOobject
(
"H",
runTime.timeName(),
mesh
),
fvc::reconstruct(fvc::snGrad(psi)*mesh.magSf())
);
if (!args.found("noH"))
{
Info<< nl
<< "Creating field H for time "
<< runTime.timeName() << endl;
H.write();
}
if (args.found("HdotGradH"))
{
Info<< nl
<< "Creating field HdotGradH for time "
<< runTime.timeName() << endl;
volVectorField HdotGradH
(
IOobject
(
"HdotGradH",
runTime.timeName(),
mesh
),
H & fvc::grad(H)
);
HdotGradH.write();
}
}
if (!args.found("noB"))
{
Info<< nl
<< "Creating field B for time "
<< runTime.timeName() << endl;
volVectorField B
(
IOobject
(
"B",
runTime.timeName(),
mesh
),
constant::electromagnetic::mu0
*fvc::reconstruct(murf*fvc::snGrad(psi)*mesh.magSf() + murf*Mrf)
);
B.write();
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools
pisoControl piso(mesh);
pisoControl bpiso(mesh, "BPISO");
Info<< "Reading transportProperties\n" << endl;
IOdictionary transportProperties
(
IOobject
(
"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
dimensionedScalar rho
(
"rho",
dimDensity,
transportProperties
);
dimensionedScalar nu
(
"nu",
dimViscosity,
transportProperties
);
dimensionedScalar mu
(
"mu",
dimensionSet(1, 1, -2, 0, 0, -2, 0),
transportProperties
);
dimensionedScalar sigma
(
"sigma",
dimensionSet(-1, -3, 3, 0, 0, 2, 0),
transportProperties
);
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Reading field pB\n" << endl;
volScalarField pB
(
IOobject
(
"pB",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field B\n" << endl;
volVectorField B
(
IOobject
(
"B",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhiB.H"
dimensionedScalar DB = 1.0/(mu*sigma);
DB.name() = "DB";
dimensionedScalar DBU = 1.0/(2.0*mu*rho);
DBU.name() = "DBU";
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, piso.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
mesh.setFluxRequired(pB.name());
IOobject phiBHeader
(
"phiB",
runTime.timeName(),
mesh,
IOobject::NO_READ
);
surfaceScalarField* phiBPtr = nullptr;
if (phiBHeader.typeHeaderOk<surfaceScalarField>(true))
{
Info<< "Reading face flux ";
phiBPtr = new surfaceScalarField
(
IOobject
(
"phiB",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
}
else
{
Info<< "Calculating face flux ";
phiBPtr = new surfaceScalarField
(
IOobject
(
"phiB",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::flux(B)
);
}
surfaceScalarField& phiB = *phiBPtr;
Info<< phiB.name() << nl << endl;
Info<< "magnetic flux divergence error = "
<< runTime.deltaTValue()
*mag(fvc::div(phiB))().weightedAverage(mesh.V()).value()
<< endl;
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2018 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
mhdFoam
Group
grpElectroMagneticsSolvers
Description
Solver for magnetohydrodynamics (MHD): incompressible, laminar flow of a
conducting fluid under the influence of a magnetic field.
An applied magnetic field H acts as a driving force,
at present boundary conditions cannot be set via the
electric field E or current density J. The fluid viscosity nu,
conductivity sigma and permeability mu are read in as uniform
constants.
A fictitous magnetic flux pressure pH is introduced in order to
compensate for discretisation errors and create a magnetic face flux
field which is divergence free as required by Maxwell's equations.
However, in this formulation discretisation error prevents the normal
stresses in UB from cancelling with those from BU, but it is unknown
whether this is a serious error. A correction could be introduced
whereby the normal stresses in the discretised BU term are replaced
by those from the UB term, but this would violate the boundedness
constraint presently observed in the present numerics which
guarantees div(U) and div(H) are zero.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "pisoControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for magnetohydrodynamics (MHD):"
" incompressible, laminar flow of a conducting fluid"
" under the influence of a magnetic field."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Starting time loop" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "CourantNo.H"
{
fvVectorMatrix UEqn
(
fvm::ddt(U)
+ fvm::div(phi, U)
- fvc::div(phiB, 2.0*DBU*B)
- fvm::laplacian(nu, U)
+ fvc::grad(DBU*magSqr(B))
);
if (piso.momentumPredictor())
{
solve(UEqn == -fvc::grad(p));
}
// --- PISO loop
while (piso.correct())
{
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ rAUf*fvc::ddtCorr(U, phi)
);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAUf);
while (piso.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAUf, p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));
if (piso.finalNonOrthogonalIter())
{
phi = phiHbyA - pEqn.flux();
}
}
#include "continuityErrs.H"
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
}
}
// --- B-PISO loop
while (bpiso.correct())
{
fvVectorMatrix BEqn
(
fvm::ddt(B)
+ fvm::div(phi, B)
- fvc::div(phiB, U)
- fvm::laplacian(DB, B)
);
BEqn.solve();
volScalarField rAB(1.0/BEqn.A());
surfaceScalarField rABf("rABf", fvc::interpolate(rAB));
phiB = fvc::flux(B);
while (bpiso.correctNonOrthogonal())
{
fvScalarMatrix pBEqn
(
fvm::laplacian(rABf, pB) == fvc::div(phiB)
);
pBEqn.solve(mesh.solver(pB.select(bpiso.finalInnerIter())));
if (bpiso.finalNonOrthogonalIter())
{
phiB -= pBEqn.flux();
}
}
#include "magneticFieldErr.H"
}
runTime.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
const dictionary& Bpiso = mesh.solutionDict().subDict("BPISO");
const int nBcorr = Bpiso.getOrDefault<int>("nCorrectors", 1);
financialFoam.C
EXE = $(FOAM_APPBIN)/financialFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lsampling
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment