Commit ea17556c authored by shunbo's avatar shunbo
Browse files

Initial commit

parents
if (!pimple.SIMPLErho())
{
rho = thermo.rho();
}
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution
const volScalarField psip0(psi*p);
volScalarField rAU(1.0/UEqn.A());
volScalarField rAtU(1.0/(1.0/rAU - UEqn.H1()));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
if (pimple.nCorrPISO() <= 1)
{
tUEqn.clear();
}
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::interpolate(rho)*fvc::flux(HbyA)
+ MRF.zeroFilter
(
fvc::interpolate(rho*rAU)*fvc::ddtCorr(rho, U, phi, rhoUf)
)
)
);
fvc::makeRelative(phiHbyA, rho, U);
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA +=
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
- fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
HbyA -= (rAU - rAtU)*fvc::grad(p);
fvScalarMatrix pDDtEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
+ fvc::div(phiHbyA) + fvm::div(phid, p)
==
fvOptions(psi, p, rho.name())
);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAtU, p));
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAU - rAtU)*fvc::grad(p);
fvScalarMatrix pDDtEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
+ fvc::div(phiHbyA)
==
fvOptions(psi, p, rho.name())
);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn(pDDtEqn - fvm::laplacian(rhorAtU, p));
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = HbyA - rAtU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);
if (pressureControl.limit(p))
{
p.correctBoundaryConditions();
}
thermo.correctRho(psi*p - psip0, rhoMin, rhoMax) ;
rho = thermo.rho();
// Correct rhoUf if the mesh is moving
fvc::correctRhoUf(rhoUf, rho, U, phi);
if (thermo.dpdt())
{
dpdt = fvc::ddt(p);
if (mesh.moving())
{
dpdt -= fvc::div(fvc::meshPhi(rho, U), p);
}
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
rhoPimpleFoam
Group
grpCompressibleSolvers
Description
Transient solver for turbulent flow of compressible fluids for HVAC and
similar applications, with optional mesh motion and mesh topology changes.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient simulations.
Note
The motion frequency of this solver can be influenced by the presence
of "updateControl" and "updateInterval" in the dynamicMeshDict.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "bound.H"
#include "pimpleControl.H"
#include "pressureControl.H"
#include "CorrectPhi.H"
#include "fvOptions.H"
#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Transient solver for compressible turbulent flow.\n"
"With optional mesh motion and mesh topology changes."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "createDyMControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createRhoUfIfPresent.H"
turbulence->validate();
if (!LTS)
{
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
// Store divrhoU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
autoPtr<volScalarField> divrhoU;
if (correctPhi)
{
divrhoU.reset
(
new volScalarField
(
"divrhoU",
fvc::div(fvc::absolute(phi, rho, U))
)
);
}
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
// Store momentum to set rhoUf for introduced faces.
autoPtr<volVectorField> rhoU;
if (rhoUf.valid())
{
rhoU.reset(new volVectorField("rhoU", rho*U));
}
// Do any mesh changes
mesh.controlledUpdate();
if (mesh.changing())
{
MRF.update();
if (correctPhi)
{
// Calculate absolute flux
// from the mapped surface velocity
phi = mesh.Sf() & rhoUf();
#include "correctPhi.H"
// Make the fluxes relative to the mesh-motion
fvc::makeRelative(phi, rho, U);
}
if (checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
}
if (pimple.firstIter() && !pimple.SIMPLErho())
{
#include "rhoEqn.H"
}
#include "UEqn.H"
#include "EEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
if (pimple.consistent())
{
#include "pcEqn.H"
}
else
{
#include "pEqn.H"
}
}
if (pimple.turbCorr())
{
turbulence->correct();
}
}
rho = thermo.rho();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalarField& rDeltaT = trDeltaT.ref();
const dictionary& pimpleDict = pimple.dict();
scalar maxCo
(
pimpleDict.getOrDefault<scalar>("maxCo", 0.8)
);
scalar rDeltaTSmoothingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTSmoothingCoeff", 0.02)
);
scalar rDeltaTDampingCoeff
(
pimpleDict.getOrDefault<scalar>("rDeltaTDampingCoeff", 1.0)
);
scalar maxDeltaT
(
pimpleDict.getOrDefault<scalar>("maxDeltaT", GREAT)
);
volScalarField rDeltaT0("rDeltaT0", rDeltaT);
// Set the reciprocal time-step from the local Courant number
rDeltaT.ref() = max
(
1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(phi))()()
/((2*maxCo)*mesh.V()*rho())
);
if (pimple.transonic())
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)*fvc::flux(U)
);
rDeltaT.ref() = max
(
rDeltaT(),
fvc::surfaceSum(mag(phid))()()
/((2*maxCo)*mesh.V()*psi())
);
}
// Update the boundary values of the reciprocal time-step
rDeltaT.correctBoundaryConditions();
Info<< "Flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
if (rDeltaTSmoothingCoeff < 1.0)
{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);
}
Info<< "Smoothed flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
// Limit rate of change of time scale
// - reduce as much as required
// - only increase at a fraction of old time scale
if
(
rDeltaTDampingCoeff < 1.0
&& runTime.timeIndex() > runTime.startTimeIndex() + 1
)
{
rDeltaT =
rDeltaT0
*max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff);
Info<< "Damped flow time scale min/max = "
<< gMin(1/rDeltaT.primitiveField())
<< ", " << gMax(1/rDeltaT.primitiveField()) << endl;
}
}
{
volScalarField& he = thermo.he();
fvScalarMatrix EEqn
(
fvm::div(phi, he)
+ (
he.name() == "e"
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
)
- fvm::laplacian(turbulence->alphaEff(), he)
==
fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
}
rhoSimpleFoam.C
EXE = $(FOAM_APPBIN)/rhoSimpleFoam
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/regionFaModels\lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-latmosphericModels \
-lregionFaModels
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
solve(UEqn == -fvc::grad(p));
fvOptions.correct(U);
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<fluidThermo> pThermo
(
fluidThermo::New(mesh)
);
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
pressureControl pressureControl(p, rho, simple.dict());
mesh.setFluxRequired(p.name());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
#include "createMRF.H"
#include "createFvOptions.H"
overRhoSimpleFoam.C
EXE = $(FOAM_APPBIN)/overRhoSimpleFoam
EXE_INC = \
-I.. \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/overset/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-ldynamicFvMesh \
-ltopoChangerFvMesh \
-lsampling \
-loverset
// Solve the Momentum equation
MRF.correctBoundaryVelocity(U);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (simple.momentumPredictor())
{
solve(UEqn == -cellMask*fvc::grad(p));
}
fvOptions.correct(U);
const volScalarField& psi = thermo.psi();
bool adjustFringe
(
simple.dict().getOrDefault("oversetAdjustPhi", false)
);
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<fluidThermo> pThermo
(
fluidThermo::New(mesh)
);
fluidThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "compressibleCreatePhi.H"
pressureControl pressureControl(p, rho, simple.dict());
mesh.setFluxRequired(p.name());
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
#include "createMRF.H"
//- Overset specific
// Add solver-specific interpolations
{
wordHashSet& nonInt =
const_cast<wordHashSet&>(Stencil::New(mesh).nonInterpolatedFields());
nonInt.insert("HbyA");
nonInt.insert("grad(p)");
nonInt.insert("surfaceIntegrate(phi)");
nonInt.insert("surfaceIntegrate(phiHbyA)");
nonInt.insert("cellMask");
nonInt.insert("cellDisplacement");
nonInt.insert("interpolatedCells");
nonInt.insert("cellInterpolationWeight");
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
#include "createInterpolatedCells.H"
Info<< "Create dynamic mesh for time = "
<< runTime.timeName() << nl << endl;
autoPtr<dynamicFvMesh> meshPtr
(
dynamicFvMesh::New
(
IOobject
(
polyMesh::defaultRegion,
runTime.timeName(),
runTime,
IOobject::MUST_READ
)
)
);
dynamicFvMesh& mesh = meshPtr();
// Calculate initial mesh-to-mesh mapping. Note that this should be
// done under the hood, e.g. as a MeshObject
mesh.update();
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenCFD Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
overRhoSimpleFoam
Group
grpCompressibleSolvers
Description
Overset steady-state solver for compressible turbulent flow.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "fluidThermo.H"
#include "turbulentFluidThermoModel.H"
#include "simpleControl.H"
#include "pressureControl.H"
#include "fvOptions.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
#include "oversetAdjustPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Overset steady-state solver for compressible turbulent flow"
);
#define CREATE_MESH createUpdatedDynamicFvMesh.H
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createUpdatedDynamicFvMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
#include "UEqn.H"
#include "EEqn.H"
#include "pEqn.H"
turbulence->correct();
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", faceMask*fvc::interpolate(rho*rAU));
volVectorField HbyA("HbyA", U);
HbyA = constrainHbyA(cellMask*rAU*UEqn.H(), U, p);
tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho)*fvc::flux(HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA -= fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
closedVolume = adjustPhi(phiHbyA, U, p);
if (adjustFringe)
{
oversetAdjustPhi(phiHbyA, U);
}
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
volVectorField gradP(fvc::grad(p));
U = HbyA - rAU*cellMask*gradP;
U.correctBoundaryConditions();
fvOptions.correct(U);
bool pLimited = pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
if (pLimited || closedVolume)
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
}
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho)*fvc::flux(HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA -= fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to ensure diagonal-dominance
pEqn.relax();
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
closedVolume = adjustPhi(phiHbyA, U, p);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = HbyA - rAU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
bool pLimited = pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
if (pLimited || closedVolume)
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
rho = thermo.rho();
volScalarField rAU(1.0/UEqn.A());
volScalarField rAtU(1.0/(1.0/rAU - UEqn.H1()));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
tUEqn.clear();
bool closedVolume = false;
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(rho)*fvc::flux(HbyA));
MRF.makeRelative(fvc::interpolate(rho), phiHbyA);
volScalarField rhorAtU("rhorAtU", rho*rAtU);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rho, U, phiHbyA, rhorAtU, MRF);
if (simple.transonic())
{
surfaceScalarField phid
(
"phid",
(fvc::interpolate(psi)/fvc::interpolate(rho))*phiHbyA
);
phiHbyA +=
fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf()
- fvc::interpolate(psi*p)*phiHbyA/fvc::interpolate(rho);
HbyA -= (rAU - rAtU)*fvc::grad(p);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
+ fvm::div(phid, p)
- fvm::laplacian(rhorAtU, p)
==
fvOptions(psi, p, rho.name())
);
// Relax the pressure equation to maintain diagonal dominance
pEqn.relax();
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
else
{
closedVolume = adjustPhi(phiHbyA, U, p);
phiHbyA += fvc::interpolate(rho*(rAtU - rAU))*fvc::snGrad(p)*mesh.magSf();
HbyA -= (rAU - rAtU)*fvc::grad(p);
while (simple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvc::div(phiHbyA)
- fvm::laplacian(rhorAtU, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference
(
pressureControl.refCell(),
pressureControl.refValue()
);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi = phiHbyA + pEqn.flux();
}
}
}
// The incompressible form of the continuity error check is appropriate for
// steady-state compressible also.
#include "incompressible/continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = HbyA - rAtU*fvc::grad(p);
U.correctBoundaryConditions();
fvOptions.correct(U);
bool pLimited = pressureControl.limit(p);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
if (closedVolume)
{
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
}
if (pLimited || closedVolume)
{
p.correctBoundaryConditions();
}
rho = thermo.rho();
if (!simple.transonic())
{
rho.relax();
}
rhoPorousSimpleFoam.C
EXE = $(FOAM_APPBIN)/rhoPorousSimpleFoam
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment