Commit 649c29f9 authored by quant's avatar quant
Browse files

Initial commit

parent 89db0b5a
EXE_INC = \
-I.. \
-I../../VoF \
-I../../interFoam/overInterDyMFoam \
-I../twoPhaseMixtureThermo \
-I../VoFphaseCompressibleTurbulenceModels/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(FOAM_SOLVERS)/incompressible/pimpleFoam/overPimpleDyMFoam \
-I$(LIB_SRC)/overset/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-ltwoPhaseProperties \
-linterfaceProperties \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lVoFphaseCompressibleTurbulenceModels \
-ldynamicMesh \
-ldynamicFvMesh \
-ltopoChangerFvMesh \
-loverset \
-lwaveModels
{
fvScalarMatrix TEqn
(
fvm::ddt(rho, T) + fvm::div(rhoPhi, T) - fvm::Sp(contErr, T)
- fvm::laplacian(turbulence.alphaEff(), T)
+ (
divUp()// - contErr/rho*p
+ (fvc::ddt(rho, K) + fvc::div(rhoPhi, K))() - contErr*K
)
*(
alpha1()/mixture.thermo1().Cv()()
+ alpha2()/mixture.thermo2().Cv()()
)
==
fvOptions(rho, T)
);
TEqn.relax();
fvOptions.constrain(TEqn);
TEqn.solve();
fvOptions.correct(T);
mixture.correctThermo();
mixture.correct();
}
MRF.correctBoundaryVelocity(U);
fvVectorMatrix UEqn
(
fvm::ddt(rho, U) + fvm::div(rhoPhi, U)
- fvm::Sp(contErr, U)
+ MRF.DDt(rho, U)
+ turbulence.divDevRhoReff(U)
==
fvOptions(rho, U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
{
solve
(
UEqn
==
cellMask*fvc::reconstruct
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
- fvc::snGrad(p_rgh)
) * mesh.magSf()
)
);
fvOptions.correct(U);
K = 0.5*magSqr(U);
}
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}
volScalarField::Internal divU
(
mesh.moving()
? fvc::div(phi + mesh.phi())
: fvc::div(phi)
);
#include "createRDeltaT.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Constructing twoPhaseMixtureThermo\n" << endl;
twoPhaseMixtureThermo mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
Info<< "Reading thermophysical properties\n" << endl;
const volScalarField& rho1 = mixture.thermo1().rho();
const volScalarField& rho2 = mixture.thermo2().rho();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
dimensionedScalar pMin
(
"pMin",
dimPressure,
mixture
);
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
// Mass flux
// Initialisation does not matter because rhoPhi is reset after the
// alpha1 solution before it is used in the U equation.
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
volScalarField dgdt(alpha1*fvc::div(phi));
#include "createAlphaFluxes.H"
// Construct compressible turbulence model
compressibleInterPhaseTransportModel turbulence
(
rho,
U,
phi,
rhoPhi,
alphaPhi10,
mixture
);
#include "createK.H"
#include "createMRF.H"
#include "createFvOptions.H"
// Overset specific
// Add solver-specific interpolations
{
wordHashSet& nonInt =
const_cast<wordHashSet&>(Stencil::New(mesh).nonInterpolatedFields());
nonInt.insert("HbyA");
nonInt.insert("grad(p_rgh)");
nonInt.insert("nHat");
nonInt.insert("surfaceIntegrate(phi)");
nonInt.insert("surfaceIntegrate(phiHbyA)");
nonInt.insert("cellMask");
nonInt.insert("cellDisplacement");
nonInt.insert("interpolatedCells");
nonInt.insert("cellInterpolationWeight");
nonInt.insert("pcorr");
}
// Mask field for zeroing out contributions on hole cells
#include "createCellMask.H"
surfaceScalarField faceMask
(
localMin<scalar>(mesh).interpolate(cellMask)
);
// Create bool field with interpolated cells
#include "createInterpolatedCells.H"
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
overCompressibleInterDyMFoam
Group
grpMultiphaseSolvers
Description
Solver for two compressible, non-isothermal, immiscible fluids using VOF
(i.e. volume of fluid) phase-fraction based interface capturing approach.
This solver supports dynamic mesh motions including overset cases.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Either mixture or two-phase transport modelling may be selected. In the
mixture approach, a single laminar, RAS or LES model is selected to model
the momentum stress. In the Euler-Euler two-phase approach separate
laminar, RAS or LES selected models are selected for each of the phases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvcSmooth.H"
#include "cellCellStencilObject.H"
#include "localMin.H"
#include "interpolationCellPoint.H"
#include "transform.H"
#include "fvMeshSubset.H"
#include "oversetAdjustPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal, immiscible fluids"
" using VOF phase-fraction based interface capturing approach.\n"
"Supports dynamic mesh motions including overset cases."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
pimpleControl pimple(mesh);
#include "createTimeControls.H"
#include "createDyMControls.H"
#include "createFields.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
#include "correctPhi.H"
#include "createUf.H"
if (!LTS)
{
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
#include "setCellMask.H"
#include "setInterpolatedCells.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
mesh.update();
if (mesh.changing())
{
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
// Do not apply previous time-step mesh compression flux
// if the mesh topology changed
if (mesh.topoChanging())
{
talphaPhi1Corr0.clear();
}
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
// Update cellMask field for blocking out hole cells
#include "setCellMask.H"
#include "setInterpolatedCells.H"
faceMask =
localMin<scalar>(mesh).interpolate(cellMask.oldTime());
// Zero Uf on old faceMask (H-I)
Uf *= faceMask;
const surfaceVectorField Uint(fvc::interpolate(U));
// Update Uf and phi on new C-I faces
Uf += (1-faceMask)*Uint;
// Update Uf boundary
forAll(Uf.boundaryField(), patchI)
{
Uf.boundaryFieldRef()[patchI] =
Uint.boundaryField()[patchI];
}
phi = mesh.Sf() & Uf;
// Correct phi on individual regions
if (correctPhi)
{
#include "correctPhi.H"
}
mixture.correct();
// Zero phi on current H-I
faceMask = localMin<scalar>(mesh).interpolate(cellMask);
phi *= faceMask;
U *= cellMask;
// Make the flux relative to the mesh motion
fvc::makeRelative(phi, U);
}
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
const surfaceScalarField faceMask
(
localMin<scalar>(mesh).interpolate(cellMask)
);
rhoPhi *= faceMask;
turbulence.correctPhasePhi();
#include "UEqn.H"
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
);
if (ddtCorr)
{
surfaceScalarField faceMaskOld
(
localMin<scalar>(mesh).interpolate(cellMask.oldTime())
);
phiHbyA +=
MRF.zeroFilter
(
fvc::interpolate(rho*rAU)*faceMaskOld*fvc::ddtCorr(U, Uf)
);
}
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*faceMask*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
);
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U =
cellMask*
(
HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf)
);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
{
Uf = fvc::interpolate(U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
Uf += n*(fvc::absolute(phi, U)/mesh.magSf() - (n & Uf));
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
// Zero faces H-I for transport Eq after pEq
phi *= faceMask;
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
);
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
surfaceScalarField rho1f(fvc::interpolate(rho1));
surfaceScalarField rho2f(fvc::interpolate(rho2));
liquidProperties/liquidPropertiesSurfaceTension.C
LIB = $(FOAM_LIBBIN)/libtwoPhaseSurfaceTension
EXE_INC = \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
LIB_LIBS = \
-linterfaceProperties \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lthermophysicalProperties \
-lfiniteVolume
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "liquidPropertiesSurfaceTension.H"
#include "liquidThermo.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace surfaceTensionModels
{
defineTypeNameAndDebug(liquidProperties, 0);
addToRunTimeSelectionTable
(
surfaceTensionModel,
liquidProperties,
dictionary
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::surfaceTensionModels::liquidProperties::liquidProperties
(
const dictionary& dict,
const fvMesh& mesh
)
:
surfaceTensionModel(mesh),
phaseName_(dict.get<word>("phase"))
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::surfaceTensionModels::liquidProperties::sigma() const
{
const heRhoThermopureMixtureliquidProperties& thermo =
mesh_.lookupObject<heRhoThermopureMixtureliquidProperties>
(
IOobject::groupName(basicThermo::dictName, phaseName_)
);
const Foam::liquidProperties& liquid = thermo.mixture().properties();
tmp<volScalarField> tsigma
(
new volScalarField
(
IOobject
(
"sigma",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh_,
dimSigma
)
);
volScalarField& sigma = tsigma.ref();
const volScalarField& T = thermo.T();
const volScalarField& p = thermo.p();
volScalarField::Internal& sigmai = sigma;
const volScalarField::Internal& pi = p;
const volScalarField::Internal& Ti = T;
forAll(sigmai, celli)
{
sigmai[celli] = liquid.sigma(pi[celli], Ti[celli]);
}
volScalarField::Boundary& sigmaBf = sigma.boundaryFieldRef();
const volScalarField::Boundary& pBf = p.boundaryField();
const volScalarField::Boundary& TBf = T.boundaryField();
forAll(sigmaBf, patchi)
{
scalarField& sigmaPf = sigmaBf[patchi];
const scalarField& pPf = pBf[patchi];
const scalarField& TPf = TBf[patchi];
forAll(sigmaPf, facei)
{
sigmaPf[facei] = liquid.sigma(pPf[facei], TPf[facei]);
}
}
return tsigma;
}
bool Foam::surfaceTensionModels::liquidProperties::readDict
(
const dictionary& dict
)
{
return true;
}
bool Foam::surfaceTensionModels::liquidProperties::writeData
(
Ostream& os
) const
{
if (surfaceTensionModel::writeData(os))
{
return os.good();
}
return false;
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::surfaceTensionModels::liquidProperties
Description
Temperature-dependent surface tension model in which the surface tension
function provided by the phase Foam::liquidProperties class is used.
Usage
\table
Property | Description | Required | Default value
phase | Phase name | yes |
\endtable
Example of the surface tension specification:
\verbatim
sigma
{
type liquidProperties;
phase water;
}
\endverbatim
See also
Foam::surfaceTensionModel
SourceFiles
liquidPropertiesSurfaceTension.C
\*---------------------------------------------------------------------------*/
#ifndef liquidPropertiesSurfaceTension_H
#define liquidPropertiesSurfaceTension_H
#include "surfaceTensionModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace surfaceTensionModels
{
/*---------------------------------------------------------------------------*\
Class liquidProperties Declaration
\*---------------------------------------------------------------------------*/
class liquidProperties
:
public surfaceTensionModel
{
// Private data
//- Name of the liquid phase
word phaseName_;
public:
//- Runtime type information
TypeName("liquidProperties");
// Constructors
//- Construct from dictionary and mesh
liquidProperties
(
const dictionary& dict,
const fvMesh& mesh
);
//- Destructor
virtual ~liquidProperties() = default;
// Member Functions
//- Surface tension coefficient
virtual tmp<volScalarField> sigma() const;
//- Update surface tension coefficient from given dictionary
virtual bool readDict(const dictionary& dict);
//- Write in dictionary format
virtual bool writeData(Ostream& os) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace surfaceTensionModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
twoPhaseMixtureThermo.C
LIB = $(FOAM_LIBBIN)/libtwoPhaseMixtureThermo
EXE_INC = \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
LIB_LIBS = \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-linterfaceProperties \
-lfiniteVolume
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseMixtureThermo.H"
#include "gradientEnergyFvPatchScalarField.H"
#include "mixedEnergyFvPatchScalarField.H"
#include "collatedFileOperation.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(twoPhaseMixtureThermo, 0);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseMixtureThermo::twoPhaseMixtureThermo
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
psiThermo(U.mesh(), word::null),
twoPhaseMixture(U.mesh(), *this),
interfaceProperties(alpha1(), U, *this),
thermo1_(nullptr),
thermo2_(nullptr)
{
{
volScalarField T1(IOobject::groupName("T", phase1Name()), T_);
T1.write();
}
{
volScalarField T2(IOobject::groupName("T", phase2Name()), T_);
T2.write();
}
// Note: we're writing files to be read in immediately afterwards.
// Avoid any thread-writing problems.
fileHandler().flush();
thermo1_ = rhoThermo::New(U.mesh(), phase1Name());
thermo2_ = rhoThermo::New(U.mesh(), phase2Name());
// thermo1_->validate(phase1Name(), "e");
// thermo2_->validate(phase2Name(), "e");
correct();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseMixtureThermo::~twoPhaseMixtureThermo()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::twoPhaseMixtureThermo::correctThermo()
{
thermo1_->he() = thermo1_->he(p_, T_);
thermo1_->correct();
thermo2_->he() = thermo2_->he(p_, T_);
thermo2_->correct();
}
void Foam::twoPhaseMixtureThermo::correct()
{
psi_ = alpha1()*thermo1_->psi() + alpha2()*thermo2_->psi();
mu_ = alpha1()*thermo1_->mu() + alpha2()*thermo2_->mu();
alpha_ = alpha1()*thermo1_->alpha() + alpha2()*thermo2_->alpha();
interfaceProperties::correct();
}
Foam::word Foam::twoPhaseMixtureThermo::thermoName() const
{
return thermo1_->thermoName() + ',' + thermo2_->thermoName();
}
bool Foam::twoPhaseMixtureThermo::incompressible() const
{
return thermo1_->incompressible() && thermo2_->incompressible();
}
bool Foam::twoPhaseMixtureThermo::isochoric() const
{
return thermo1_->isochoric() && thermo2_->isochoric();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::he
(
const volScalarField& p,
const volScalarField& T
) const
{
return alpha1()*thermo1_->he(p, T) + alpha2()*thermo2_->he(p, T);
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::he
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const
{
return
scalarField(alpha1(), cells)*thermo1_->he(p, T, cells)
+ scalarField(alpha2(), cells)*thermo2_->he(p, T, cells);
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::he
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->he(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->he(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::hc() const
{
return alpha1()*thermo1_->hc() + alpha2()*thermo2_->hc();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0,
const labelList& cells
) const
{
NotImplemented;
return T0;
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0,
const label patchi
) const
{
NotImplemented;
return T0;
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::Cp() const
{
return alpha1()*thermo1_->Cp() + alpha2()*thermo2_->Cp();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::Cp
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->Cp(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->Cp(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::Cv() const
{
return alpha1()*thermo1_->Cv() + alpha2()*thermo2_->Cv();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::Cv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->Cv(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->Cv(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::gamma() const
{
return alpha1()*thermo1_->gamma() + alpha2()*thermo2_->gamma();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::gamma
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->gamma(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->gamma(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::Cpv() const
{
return alpha1()*thermo1_->Cpv() + alpha2()*thermo2_->Cpv();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::Cpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->Cpv(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->Cpv(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::CpByCpv() const
{
return
alpha1()*thermo1_->CpByCpv()
+ alpha2()*thermo2_->CpByCpv();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::CpByCpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->CpByCpv(p, T, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->CpByCpv(p, T, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::W() const
{
return alpha1()*thermo1_->W() + alpha2()*thermo1_->W();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::nu() const
{
return mu()/(alpha1()*thermo1_->rho() + alpha2()*thermo2_->rho());
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::nu
(
const label patchi
) const
{
return
mu(patchi)
/(
alpha1().boundaryField()[patchi]*thermo1_->rho(patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->rho(patchi)
);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::kappa() const
{
return alpha1()*thermo1_->kappa() + alpha2()*thermo2_->kappa();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::kappa
(
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->kappa(patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->kappa(patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::alphahe() const
{
return
alpha1()*thermo1_->alphahe()
+ alpha2()*thermo2_->alphahe();
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::alphahe
(
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->alphahe(patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->alphahe(patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::kappaEff
(
const volScalarField& alphat
) const
{
return
alpha1()*thermo1_->kappaEff(alphat)
+ alpha2()*thermo2_->kappaEff(alphat);
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::kappaEff
(
const scalarField& alphat,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->kappaEff(alphat, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->kappaEff(alphat, patchi);
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureThermo::alphaEff
(
const volScalarField& alphat
) const
{
return
alpha1()*thermo1_->alphaEff(alphat)
+ alpha2()*thermo2_->alphaEff(alphat);
}
Foam::tmp<Foam::scalarField> Foam::twoPhaseMixtureThermo::alphaEff
(
const scalarField& alphat,
const label patchi
) const
{
return
alpha1().boundaryField()[patchi]*thermo1_->alphaEff(alphat, patchi)
+ alpha2().boundaryField()[patchi]*thermo2_->alphaEff(alphat, patchi);
}
bool Foam::twoPhaseMixtureThermo::read()
{
if (psiThermo::read())
{
return interfaceProperties::read();
}
return false;
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::twoPhaseMixtureThermo
Description
SourceFiles
twoPhaseMixtureThermoI.H
twoPhaseMixtureThermo.C
twoPhaseMixtureThermoIO.C
\*---------------------------------------------------------------------------*/
#ifndef twoPhaseMixtureThermo_H
#define twoPhaseMixtureThermo_H
#include "rhoThermo.H"
#include "psiThermo.H"
#include "twoPhaseMixture.H"
#include "interfaceProperties.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class twoPhaseMixtureThermo Declaration
\*---------------------------------------------------------------------------*/
class twoPhaseMixtureThermo
:
public psiThermo,
public twoPhaseMixture,
public interfaceProperties
{
// Private data
//- Thermo-package of phase 1
autoPtr<rhoThermo> thermo1_;
//- Thermo-package of phase 2
autoPtr<rhoThermo> thermo2_;
public:
//- Runtime type information
TypeName("twoPhaseMixtureThermo");
// Constructors
//- Construct from components
twoPhaseMixtureThermo
(
const volVectorField& U,
const surfaceScalarField& phi
);
//- Destructor
virtual ~twoPhaseMixtureThermo();
// Member Functions
const rhoThermo& thermo1() const
{
return *thermo1_;
}
const rhoThermo& thermo2() const
{
return *thermo2_;
}
rhoThermo& thermo1()
{
return *thermo1_;
}
rhoThermo& thermo2()
{
return *thermo2_;
}
//- Correct the thermodynamics of each phase
virtual void correctThermo();
//- Update mixture properties
virtual void correct();
//- Return the name of the thermo physics
virtual word thermoName() const;
//- Return true if the equation of state is incompressible
// i.e. rho != f(p)
virtual bool incompressible() const;
//- Return true if the equation of state is isochoric
// i.e. rho = const
virtual bool isochoric() const;
// Access to thermodynamic state variables
//- Enthalpy/Internal energy [J/kg]
// Non-const access allowed for transport equations
virtual volScalarField& he()
{
NotImplemented;
return thermo1_->he();
}
//- Enthalpy/Internal energy [J/kg]
virtual const volScalarField& he() const
{
NotImplemented;
return thermo1_->he();
}
//- Enthalpy/Internal energy
// for given pressure and temperature [J/kg]
virtual tmp<volScalarField> he
(
const volScalarField& p,
const volScalarField& T
) const;
//- Enthalpy/Internal energy for cell-set [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const;
//- Enthalpy/Internal energy for patch [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Chemical enthalpy [J/kg]
virtual tmp<volScalarField> hc() const;
//- Temperature from enthalpy/internal energy for cell-set
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const labelList& cells
) const;
//- Temperature from enthalpy/internal energy for patch
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const label patchi
) const;
// Fields derived from thermodynamic state variables
//- Heat capacity at constant pressure [J/kg/K]
virtual tmp<volScalarField> Cp() const;
//- Heat capacity at constant pressure for patch [J/kg/K]
virtual tmp<scalarField> Cp
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity using pressure and temperature
virtual tmp<scalarField> Cp
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const
{
NotImplemented;
return tmp<scalarField>::New(p);
}
//- Heat capacity at constant volume [J/kg/K]
virtual tmp<volScalarField> Cv() const;
//- Heat capacity at constant volume for patch [J/kg/K]
virtual tmp<scalarField> Cv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Density from pressure and temperature
virtual tmp<scalarField> rhoEoS
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const
{
NotImplemented;
return tmp<scalarField>::New(p);
}
//- Gamma = Cp/Cv []
virtual tmp<volScalarField> gamma() const;
//- Gamma = Cp/Cv for patch []
virtual tmp<scalarField> gamma
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity at constant pressure/volume [J/kg/K]
virtual tmp<volScalarField> Cpv() const;
//- Heat capacity at constant pressure/volume for patch [J/kg/K]
virtual tmp<scalarField> Cpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity ratio []
virtual tmp<volScalarField> CpByCpv() const;
//- Heat capacity ratio for patch []
virtual tmp<scalarField> CpByCpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Molecular weight [kg/kmol]
virtual tmp<volScalarField> W() const;
// Fields derived from transport state variables
//- Kinematic viscosity of mixture [m^2/s]
virtual tmp<volScalarField> nu() const;
//- Kinematic viscosity of mixture for patch [m^2/s]
virtual tmp<scalarField> nu(const label patchi) const;
//- Thermal diffusivity for temperature of mixture [J/m/s/K]
virtual tmp<volScalarField> kappa() const;
//- Thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappa
(
const label patchi
) const;
//- Thermal diffusivity for energy of mixture [kg/m/s]
virtual tmp<volScalarField> alphahe() const;
//- Thermal diffusivity for energy of mixture for patch [kg/m/s]
virtual tmp<scalarField> alphahe(const label patchi) const;
//- Effective thermal diffusivity of mixture [J/m/s/K]
virtual tmp<volScalarField> kappaEff
(
const volScalarField& alphat
) const;
//- Effective thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappaEff
(
const scalarField& alphat,
const label patchi
) const;
//- Effective thermal diffusivity of mixture [J/m/s/K]
virtual tmp<volScalarField> alphaEff
(
const volScalarField& alphat
) const;
//- Effective thermal diffusivity of mixture for patch [J/m/s/K]
virtual tmp<scalarField> alphaEff
(
const scalarField& alphat,
const label patchi
) const;
// IO
//- Read base transportProperties dictionary
virtual bool read();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
#------------------------------------------------------------------------------
wclean libso multiphaseMixtureThermo
wclean
#------------------------------------------------------------------------------
#!/bin/sh
cd "${0%/*}" || exit # Run from this directory
. ${WM_PROJECT_DIR:?}/wmake/scripts/AllwmakeParseArguments
#------------------------------------------------------------------------------
wmake $targetType multiphaseMixtureThermo
wmake $targetType
#------------------------------------------------------------------------------
compressibleMultiphaseInterFoam.C
EXE = $(FOAM_APPBIN)/compressibleMultiphaseInterFoam
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment