Commit 649c29f9 authored by quant's avatar quant
Browse files

Initial commit

parent 89db0b5a
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
Copyright (C) 2020-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFSolidificationMeltingSource.H"
#include "twoPhaseMixtureThermo.H"
#include "zeroGradientFvPatchFields.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
defineTypeNameAndDebug(VoFSolidificationMeltingSource, 0);
addToRunTimeSelectionTable
(
option,
VoFSolidificationMeltingSource,
dictionary
);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::fv::VoFSolidificationMeltingSource::update()
{
if (curTimeIndex_ == mesh_.time().timeIndex())
{
return;
}
if (debug)
{
Info<< type() << ": " << name_
<< " - updating solid phase fraction" << endl;
}
alphaSolid_.oldTime();
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField& TVoF = thermo.thermo1().T();
const volScalarField CpVoF(thermo.thermo1().Cp());
const volScalarField& alphaVoF = thermo.alpha1();
forAll(cells_, i)
{
const label celli = cells_[i];
alphaSolid_[celli] = min
(
relax_*alphaVoF[celli]*alphaSolidT_->value(TVoF[celli])
+ (1 - relax_)*alphaSolid_[celli],
alphaVoF[celli]
);
}
alphaSolid_.correctBoundaryConditions();
curTimeIndex_ = mesh_.time().timeIndex();
}
Foam::word Foam::fv::VoFSolidificationMeltingSource::alphaSolidName() const
{
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField& alphaVoF = thermo.alpha1();
return IOobject::groupName(alphaVoF.name(), "solid");
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fv::VoFSolidificationMeltingSource::VoFSolidificationMeltingSource
(
const word& sourceName,
const word& modelType,
const dictionary& dict,
const fvMesh& mesh
)
:
fv::cellSetOption(sourceName, modelType, dict, mesh),
alphaSolidT_(Function1<scalar>::New("alphaSolidT", coeffs_, &mesh)),
L_("L", dimEnergy/dimMass, coeffs_),
relax_(coeffs_.getOrDefault("relax", 0.9)),
Cu_(coeffs_.getOrDefault<scalar>("Cu", 100000)),
q_(coeffs_.getOrDefault<scalar>("q", 0.001)),
alphaSolid_
(
IOobject
(
alphaSolidName(),
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
),
curTimeIndex_(-1)
{
fieldNames_.resize(2);
fieldNames_[0] = "U";
fieldNames_[1] = "T";
fv::option::resetApplied();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
fvMatrix<scalar>& eqn,
const label fieldi
)
{
apply(geometricOneField(), eqn);
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
const volScalarField& rho,
fvMatrix<scalar>& eqn,
const label fieldi
)
{
apply(rho, eqn);
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
fvMatrix<vector>& eqn,
const label fieldi
)
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
update();
scalarField& Sp = eqn.diag();
const scalarField& V = mesh_.V();
forAll(cells_, i)
{
const label celli = cells_[i];
const scalar Vc = V[celli];
const scalar alphaFluid = 1 - alphaSolid_[celli];
const scalar S = Cu_*sqr(1 - alphaFluid)/(pow3(alphaFluid) + q_);
Sp[celli] -= Vc*S;
}
}
void Foam::fv::VoFSolidificationMeltingSource::addSup
(
const volScalarField& rho,
fvMatrix<vector>& eqn,
const label fieldi
)
{
// Momentum source uses a Boussinesq approximation - redirect
addSup(eqn, fieldi);
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::fv::VoFSolidificationMeltingSource
Description
Solidification and melting model for VoF simulations.
The presence of the solid phase in the flow field is incorporated into the
model as a momentum porosity contribution; the energy associated with the
phase change is added as an enthalpy contribution. The solid fraction as a
function of temperature \c alphaSolidT is specified as a Foam::Function1.
The model writes the field \c alpha[01].solid which can be visualised to to
show the solid distribution.
Usage
Example usage:
\verbatim
VoFSolidificationMeltingSource1
{
type VoFSolidificationMeltingSource;
active yes;
selectionMode cellZone;
cellZone solidZone;
alphaSolidT table
(
(330 1)
(335 0)
);
L 334000;
}
\endverbatim
Where:
\table
Property | Description | Required | Default value
alphaSolidT | Solid fraction as function of temperature | yes |
L | Latent heat of fusion [J/kg] | yes |
relax | Relaxation coefficient [0-1] | no | 0.9
Cu | Model coefficient | no | 100000
q | Model coefficient | no | 0.001
\endtable
See also
Foam::fv::solidificationMeltingSource
Foam::Function1
SourceFiles
VoFSolidificationMeltingSource.C
VoFSolidificationMeltingSourceIO.C
\*---------------------------------------------------------------------------*/
#ifndef VoFSolidificationMeltingSource_H
#define VoFSolidificationMeltingSource_H
#include "fvMesh.H"
#include "volFields.H"
#include "cellSetOption.H"
#include "Function1.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace fv
{
/*---------------------------------------------------------------------------*\
Class VoFSolidificationMeltingSource Declaration
\*---------------------------------------------------------------------------*/
class VoFSolidificationMeltingSource
:
public fv::cellSetOption
{
// Private data
//- Solid fraction as a function of temperature
autoPtr<Function1<scalar>> alphaSolidT_;
//- Latent heat of fusion [J/kg]
dimensionedScalar L_;
//- Phase fraction under-relaxation coefficient
scalar relax_;
//- Mushy region momentum sink coefficient [1/s]; default = 10^5
scalar Cu_;
//- Coefficient used in porosity calc - default = 0.001
scalar q_;
//- Solid phase fraction
volScalarField alphaSolid_;
//- Current time index (used for updating)
label curTimeIndex_;
// Private Member Functions
//- Return the name of the solid phase fraction
word alphaSolidName() const;
//- Update the model
void update();
//- Helper function to apply to the energy equation
template<class RhoFieldType>
void apply(const RhoFieldType& rho, fvMatrix<scalar>& eqn);
//- No copy construct
VoFSolidificationMeltingSource
(
const VoFSolidificationMeltingSource&
) = delete;
//- No copy assignment
void operator=(const VoFSolidificationMeltingSource&) = delete;
public:
//- Runtime type information
TypeName("VoFSolidificationMeltingSource");
// Constructors
//- Construct from explicit source name and mesh
VoFSolidificationMeltingSource
(
const word& sourceName,
const word& modelType,
const dictionary& dict,
const fvMesh& mesh
);
// Member Functions
// Add explicit and implicit contributions
//- Add explicit contribution to enthalpy equation
virtual void addSup(fvMatrix<scalar>& eqn, const label fieldi);
//- Add implicit contribution to momentum equation
virtual void addSup(fvMatrix<vector>& eqn, const label fieldi);
// Add explicit and implicit contributions to compressible equation
//- Add explicit contribution to compressible enthalpy equation
virtual void addSup
(
const volScalarField& rho,
fvMatrix<scalar>& eqn,
const label fieldi
);
//- Add implicit contribution to compressible momentum equation
virtual void addSup
(
const volScalarField& rho,
fvMatrix<vector>& eqn,
const label fieldi
);
// IO
//- Read source dictionary
virtual bool read(const dictionary& dict);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace fv
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
#include "VoFSolidificationMeltingSourceTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "VoFSolidificationMeltingSource.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
bool Foam::fv::VoFSolidificationMeltingSource::read(const dictionary& dict)
{
if (fv::cellSetOption::read(dict))
{
alphaSolidT_ = Function1<scalar>::New("alphaSolidT", coeffs_, &mesh_);
coeffs_.readEntry("L", L_);
coeffs_.readIfPresent("relax", relax_);
coeffs_.readIfPresent("Cu", Cu_);
coeffs_.readIfPresent("q", q_);
return true;
}
return false;
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvcDdt.H"
#include "twoPhaseMixtureThermo.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
template<class RhoFieldType>
void Foam::fv::VoFSolidificationMeltingSource::apply
(
const RhoFieldType& rho,
fvMatrix<scalar>& eqn
)
{
if (debug)
{
Info<< type() << ": applying source to " << eqn.psi().name() << endl;
}
update();
const twoPhaseMixtureThermo& thermo
(
mesh_.lookupObject<twoPhaseMixtureThermo>
(
twoPhaseMixtureThermo::dictName
)
);
const volScalarField CpVoF(thermo.thermo1().Cp());
if (eqn.psi().dimensions() == dimTemperature)
{
eqn += L_/CpVoF*(fvc::ddt(rho, alphaSolid_));
}
else
{
eqn += L_*(fvc::ddt(rho, alphaSolid_));
}
}
// ************************************************************************* //
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterFoam
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "SLGThermo.H"
#include "surfaceFilmModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"
#include "createSurfaceFilmModel.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
regionModels::surfaceFilmModel& surfaceFilm = tsurfaceFilm();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
surfaceFilm.evolve();
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
volScalarField::Internal Srho(surfaceFilm.Srho());
contErr -= posPart(Srho);
#include "UEqn.H"
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Info<< "\nConstructing surface film model" << endl;
SLGThermo slgThermo(mesh, mixture.thermo1());
autoPtr<regionModels::surfaceFilmModel> tsurfaceFilm
(
regionModels::surfaceFilmModel::New(mesh, g)
);
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
) - surfaceFilm.Srho()/rho1;
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) OpenCFD OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterFoam
Group
grpMultiphaseSolvers
Description
Solver for two compressible, non-isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Either mixture or two-phase transport modelling may be selected. In the
mixture approach a single laminar, RAS or LES model is selected to model the
momentum stress. In the Euler-Euler two-phase approach separate laminar,
RAS or LES selected models are selected for each of the phases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fvcSmooth.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing."
);
#include "postProcess.H"
#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
if (!LTS)
{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
#include "UEqn.H"
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
compressibleInterIsoFoam.C
EXE = $(FOAM_APPBIN)/compressibleInterIsoFoam
EXE_INC = \
-I.. \
-I../../VoF \
-I../twoPhaseMixtureThermo \
-I../VoFphaseCompressibleTurbulenceModels \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude \
-I$(LIB_SRC)/surfMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \
-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/transportModels/geometricVoF/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lfvOptions \
-lsurfMesh \
-lmeshTools \
-ldynamicMesh \
-ldynamicFvMesh \
-ltwoPhaseMixtureThermo \
-ltwoPhaseSurfaceTension \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-ltwoPhaseMixture \
-ltwoPhaseProperties \
-linterfaceProperties \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lVoFphaseCompressibleTurbulenceModels \
-lgeometricVoF
const dictionary& alphaControls = mesh.solverDict(alpha1.name());
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
// Update alpha1
#include "alphaSuSp.H"
advector.advect(Sp,(Su + divU*min(alpha1(), scalar(1)))());
// Update rhoPhi
rhoPhi = advector.getRhoPhi(rho1, rho2);
alphaPhi10 = advector.alphaPhi();
alpha2 = 1.0 - alpha1;
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") - 1 = " << max(alpha1).value() - 1
<< endl;
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(dgdt.dimensions(), Zero)
);
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}
volScalarField::Internal divU
(
mesh.moving()
? fvc::div(phi + mesh.phi())
: fvc::div(phi)
);
if (pimple.nCorrPIMPLE() > 1)
{
if (!pimple.firstIter())
{
// Resetting alpha1 to value before advection in first PIMPLE
// iteration.
alpha1 = alpha1.oldTime();
}
}
tmp<surfaceScalarField> talphaPhi1(alphaPhi10);
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
talphaPhi1 = new surfaceScalarField
(
IOobject
(
"alphaPhi1",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(alphaPhi10.dimensions(), Zero)
);
surfaceScalarField rhoPhiSum
(
IOobject
(
"rhoPhiSum",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar(rhoPhi.dimensions(), Zero)
);
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
#include "alphaEqn.H"
talphaPhi1.ref() += (runTime.deltaT()/totalDeltaT)*alphaPhi10;
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
}
rhoPhi = rhoPhiSum;
}
else
{
#include "alphaEqn.H"
}
rho == alpha1*rho1 + alpha2*rho2;
const surfaceScalarField& alphaPhi1 = talphaPhi1();
surfaceScalarField alphaPhi2("alphaPhi2", phi - alphaPhi1);
volScalarField::Internal contErr
(
(
fvc::ddt(rho) + fvc::div(rhoPhi)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)()
);
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2020 OpenCFD Ltd.
Copyright (C) 2020 Johan Roenby
Copyright (C) 2020 DLR
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
compressibleInterFlow
Description
Solver derived from interFoam for two compressible, immiscible
fluids using the isoAdvector phase-fraction based interface capturing
approach, with optional mesh motion and mesh topology changes including
adaptive re-meshing.
Reference:
\verbatim
Roenby, J., Bredmose, H. and Jasak, H. (2016).
A computational method for sharp interface advection
Royal Society Open Science, 3
doi 10.1098/rsos.160405
\endverbatim
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "CMULES.H"
#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"
#include "CrankNicolsonDdtScheme.H"
#include "subCycle.H"
#include "compressibleInterPhaseTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"
#include "dynamicRefineFvMesh.H"
#include "isoAdvection.H"
#include "twoPhaseMixtureThermo.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Solver for two compressible, non-isothermal immiscible fluids"
" using VOF phase-fraction based interface capturing.\n"
"With optional mesh motion and mesh topology changes including"
" adaptive re-meshing."
);
#include "postProcess.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "createUf.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
volScalarField& p = mixture.p();
volScalarField& T = mixture.T();
const volScalarField& psi1 = mixture.thermo1().psi();
const volScalarField& psi2 = mixture.thermo2().psi();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readDyMControls.H"
// Store divU and divUp from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
volScalarField divU("divU0", fvc::div(fvc::absolute(phi, U)));
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
++runTime;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstIter() || moveMeshOuterCorrectors)
{
scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();
if (isA<dynamicRefineFvMesh>(mesh))
{
advector.surf().reconstruct();
}
mesh.update();
if (mesh.changing())
{
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
if (isA<dynamicRefineFvMesh>(mesh))
{
advector.surf().mapAlphaField();
alpha2 = 1.0 - alpha1;
alpha2.correctBoundaryConditions();
rho == alpha1*rho1 + alpha2*rho2;
rho.correctBoundaryConditions();
rho.oldTime() = rho;
alpha2.oldTime() = alpha2;
}
MRF.update();
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
}
if ((mesh.changing() && correctPhi))
{
// Calculate absolute flux from the mapped surface velocity
phi = mesh.Sf() & Uf;
#include "correctPhi.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
mixture.correct();
}
if (mesh.changing() && checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}
#include "alphaControls.H"
#include "compressibleAlphaEqnSubCycle.H"
turbulence.correctPhasePhi();
#include "UEqn.H"
volScalarField divUp("divUp", fvc::div(fvc::absolute(phi, U), p));
#include "TEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence.correct();
}
}
runTime.write();
runTime.printExecutionTime(Info);
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
CorrectPhi
(
U,
phi,
p,
dimensionedScalar("rAUf", dimTime/rho.dimensions(), 1),
divU,
pimple
);
//***HGW phi.oldTime() = phi;
#include "continuityErrs.H"
#include "createRDeltaT.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Constructing twoPhaseMixtureThermo\n" << endl;
twoPhaseMixtureThermo mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
Info<< "Reading thermophysical properties\n" << endl;
const volScalarField& rho1 = mixture.thermo1().rho();
const volScalarField& rho2 = mixture.thermo2().rho();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
dimensionedScalar pMin
(
"pMin",
dimPressure,
mixture
);
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
// Mass flux
// Initialisation does not matter because rhoPhi is reset after the
// alpha1 solution before it is used in the U equation.
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
volScalarField dgdt(alpha1*fvc::div(phi));
#include "createAlphaFluxes.H"
Foam::isoAdvection advector(alpha1,phi,U);
// Construct compressible turbulence model
compressibleInterPhaseTransportModel turbulence
(
rho,
U,
phi,
rhoPhi,
alphaPhi10,
mixture
);
#include "createK.H"
#include "createMRF.H"
#include "createFvOptions.H"
{
volScalarField rAU("rAU", 1.0/UEqn.A());
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));
surfaceScalarField phiHbyA
(
"phiHbyA",
fvc::flux(HbyA)
+ MRF.zeroFilter(fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, Uf))
);
MRF.makeRelative(phiHbyA);
surfaceScalarField phig
(
(
mixture.surfaceTensionForce()
- ghf*fvc::snGrad(rho)
)*rAUf*mesh.magSf()
);
phiHbyA += phig;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phiHbyA, U);
tmp<fvScalarMatrix> p_rghEqnComp1;
tmp<fvScalarMatrix> p_rghEqnComp2;
if (pimple.transonic())
{
#include "rhofs.H"
surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi);
surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi);
p_rghEqnComp1 =
(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1/rho1)
*correction
(
psi1*fvm::ddt(p_rgh)
+ fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh)
)
);
p_rghEqnComp1.ref().relax();
p_rghEqnComp2 =
(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2/rho2)
*correction
(
psi2*fvm::ddt(p_rgh)
+ fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh)
)
);
p_rghEqnComp2.ref().relax();
}
else
{
#include "rhofs.H"
p_rghEqnComp1 =
pos(alpha1)
*(
(
fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f)
- (fvOptions(alpha1, mixture.thermo1().rho())&rho1)
)/rho1
- fvc::ddt(alpha1) - fvc::div(alphaPhi1)
+ (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh))
);
p_rghEqnComp2 =
pos(alpha2)
*(
(
fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f)
- (fvOptions(alpha2, mixture.thermo2().rho())&rho2)
)/rho2
- fvc::ddt(alpha2) - fvc::div(alphaPhi2)
+ (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh))
);
}
if (mesh.moving())
{
p_rghEqnComp1.ref() += fvc::div(mesh.phi())*alpha1;
p_rghEqnComp2.ref() += fvc::div(mesh.phi())*alpha2;
}
p_rghEqnComp1.ref() *= pos(alpha1);
p_rghEqnComp2.ref() *= pos(alpha2);
if (pimple.transonic())
{
p_rghEqnComp1.ref().relax();
p_rghEqnComp2.ref().relax();
}
// Cache p_rgh prior to solve for density update
volScalarField p_rgh_0(p_rgh);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix p_rghEqnIncomp
(
fvc::div(phiHbyA)
- fvm::laplacian(rAUf, p_rgh)
);
solve
(
p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp,
mesh.solver(p_rgh.select(pimple.finalInnerIter()))
);
if (pimple.finalNonOrthogonalIter())
{
p = max(p_rgh + (alpha1*rho1 + alpha2*rho2)*gh, pMin);
p_rgh = p - (alpha1*rho1 + alpha2*rho2)*gh;
dgdt =
(
alpha1*(p_rghEqnComp2 & p_rgh)
- alpha2*(p_rghEqnComp1 & p_rgh)
);
phi = phiHbyA + p_rghEqnIncomp.flux();
U = HbyA
+ rAU*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}
// Correct Uf if the mesh is moving
{
Uf = fvc::interpolate(U);
surfaceVectorField n(mesh.Sf()/mesh.magSf());
Uf += n*(fvc::absolute(phi, U)/mesh.magSf() - (n & Uf));
}
// Update densities from change in p_rgh
mixture.thermo1().correctRho(psi1*(p_rgh - p_rgh_0));
mixture.thermo2().correctRho(psi2*(p_rgh - p_rgh_0));
rho = alpha1*rho1 + alpha2*rho2;
// Correct p_rgh for consistency with p and the updated densities
p_rgh = p - rho*gh;
p_rgh.correctBoundaryConditions();
K = 0.5*magSqr(U);
}
#include "createRDeltaT.H"
Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
Info<< "Constructing twoPhaseMixtureThermo\n" << endl;
twoPhaseMixtureThermo mixture(U, phi);
volScalarField& alpha1(mixture.alpha1());
volScalarField& alpha2(mixture.alpha2());
Info<< "Reading thermophysical properties\n" << endl;
const volScalarField& rho1 = mixture.thermo1().rho();
const volScalarField& rho2 = mixture.thermo2().rho();
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2
);
dimensionedScalar pMin
(
"pMin",
dimPressure,
mixture
);
mesh.setFluxRequired(p_rgh.name());
mesh.setFluxRequired(alpha1.name());
#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"
// Mass flux
// Initialisation does not matter because rhoPhi is reset after the
// alpha1 solution before it is used in the U equation.
surfaceScalarField rhoPhi
(
IOobject
(
"rhoPhi",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvc::interpolate(rho)*phi
);
volScalarField dgdt(alpha1*fvc::div(phi));
#include "createAlphaFluxes.H"
// Construct compressible turbulence model
compressibleInterPhaseTransportModel turbulence
(
rho,
U,
phi,
rhoPhi,
alphaPhi10,
mixture
);
#include "createK.H"
#include "createMRF.H"
#include "createFvOptions.H"
overCompressibleInterDyMFoam.C
EXE = $(FOAM_APPBIN)/overCompressibleInterDyMFoam
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment