Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
hehl2
Torchaudio
Commits
60fd113c
"encoding/models/sseg/encnet.py" did not exist on "ce461dae8d088253dcd9818d2999d4049bce3493"
Unverified
Commit
60fd113c
authored
Jan 17, 2020
by
Vincent QB
Committed by
GitHub
Jan 17, 2020
Browse files
replace reshape by view. (#409)
parent
b32606d6
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
25 additions
and
26 deletions
+25
-26
torchaudio/functional.py
torchaudio/functional.py
+21
-22
torchaudio/transforms.py
torchaudio/transforms.py
+4
-4
No files found.
torchaudio/functional.py
View file @
60fd113c
...
@@ -129,7 +129,7 @@ def istft(
...
@@ -129,7 +129,7 @@ def istft(
# pack batch
# pack batch
shape
=
stft_matrix
.
size
()
shape
=
stft_matrix
.
size
()
stft_matrix
=
stft_matrix
.
reshape
(
-
1
,
shape
[
-
3
],
shape
[
-
2
],
shape
[
-
1
])
stft_matrix
=
stft_matrix
.
view
(
-
1
,
shape
[
-
3
],
shape
[
-
2
],
shape
[
-
1
])
dtype
=
stft_matrix
.
dtype
dtype
=
stft_matrix
.
dtype
device
=
stft_matrix
.
device
device
=
stft_matrix
.
device
...
@@ -214,7 +214,7 @@ def istft(
...
@@ -214,7 +214,7 @@ def istft(
y
=
(
y
/
window_envelop
).
squeeze
(
1
)
# size (channel, expected_signal_len)
y
=
(
y
/
window_envelop
).
squeeze
(
1
)
# size (channel, expected_signal_len)
# unpack batch
# unpack batch
y
=
y
.
reshape
(
shape
[:
-
3
]
+
y
.
shape
[
-
1
:])
y
=
y
.
view
(
shape
[:
-
3
]
+
y
.
shape
[
-
1
:])
if
stft_matrix_dim
==
3
:
# remove the channel dimension
if
stft_matrix_dim
==
3
:
# remove the channel dimension
y
=
y
.
squeeze
(
0
)
y
=
y
.
squeeze
(
0
)
...
@@ -253,7 +253,7 @@ def spectrogram(
...
@@ -253,7 +253,7 @@ def spectrogram(
# pack batch
# pack batch
shape
=
waveform
.
size
()
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
# default values are consistent with librosa.core.spectrum._spectrogram
# default values are consistent with librosa.core.spectrum._spectrogram
spec_f
=
_stft
(
spec_f
=
_stft
(
...
@@ -261,7 +261,7 @@ def spectrogram(
...
@@ -261,7 +261,7 @@ def spectrogram(
)
)
# unpack batch
# unpack batch
spec_f
=
spec_f
.
reshape
(
shape
[:
-
1
]
+
spec_f
.
shape
[
-
3
:])
spec_f
=
spec_f
.
view
(
shape
[:
-
1
]
+
spec_f
.
shape
[
-
3
:])
if
normalized
:
if
normalized
:
spec_f
/=
window
.
pow
(
2.
).
sum
().
sqrt
()
spec_f
/=
window
.
pow
(
2.
).
sum
().
sqrt
()
...
@@ -317,7 +317,7 @@ def griffinlim(
...
@@ -317,7 +317,7 @@ def griffinlim(
# pack batch
# pack batch
shape
=
specgram
.
size
()
shape
=
specgram
.
size
()
specgram
=
specgram
.
reshape
([
-
1
]
+
list
(
shape
[
-
2
:]))
specgram
=
specgram
.
view
([
-
1
]
+
list
(
shape
[
-
2
:]))
specgram
=
specgram
.
pow
(
1
/
power
)
specgram
=
specgram
.
pow
(
1
/
power
)
...
@@ -363,7 +363,7 @@ def griffinlim(
...
@@ -363,7 +363,7 @@ def griffinlim(
length
=
length
)
length
=
length
)
# unpack batch
# unpack batch
waveform
=
waveform
.
reshape
(
shape
[:
-
2
]
+
waveform
.
shape
[
-
1
:])
waveform
=
waveform
.
view
(
shape
[:
-
2
]
+
waveform
.
shape
[
-
1
:])
return
waveform
return
waveform
...
@@ -587,7 +587,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
...
@@ -587,7 +587,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
# pack batch
# pack batch
shape
=
complex_specgrams
.
size
()
shape
=
complex_specgrams
.
size
()
complex_specgrams
=
complex_specgrams
.
reshape
([
-
1
]
+
list
(
shape
[
-
3
:]))
complex_specgrams
=
complex_specgrams
.
view
([
-
1
]
+
list
(
shape
[
-
3
:]))
time_steps
=
torch
.
arange
(
0
,
time_steps
=
torch
.
arange
(
0
,
complex_specgrams
.
size
(
-
2
),
complex_specgrams
.
size
(
-
2
),
...
@@ -627,7 +627,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
...
@@ -627,7 +627,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
complex_specgrams_stretch
=
torch
.
stack
([
real_stretch
,
imag_stretch
],
dim
=-
1
)
complex_specgrams_stretch
=
torch
.
stack
([
real_stretch
,
imag_stretch
],
dim
=-
1
)
# unpack batch
# unpack batch
complex_specgrams_stretch
=
complex_specgrams_stretch
.
reshape
(
shape
[:
-
3
]
+
complex_specgrams_stretch
.
shape
[
1
:])
complex_specgrams_stretch
=
complex_specgrams_stretch
.
view
(
shape
[:
-
3
]
+
complex_specgrams_stretch
.
shape
[
1
:])
return
complex_specgrams_stretch
return
complex_specgrams_stretch
...
@@ -654,7 +654,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
...
@@ -654,7 +654,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
# pack batch
# pack batch
shape
=
waveform
.
size
()
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
len
(
waveform
.
size
())
==
2
)
...
@@ -697,7 +697,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
...
@@ -697,7 +697,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
output
=
torch
.
clamp
(
padded_output_waveform
[:,
(
n_order
-
1
):],
min
=-
1.
,
max
=
1.
)
output
=
torch
.
clamp
(
padded_output_waveform
[:,
(
n_order
-
1
):],
min
=-
1.
,
max
=
1.
)
# unpack batch
# unpack batch
output
=
output
.
reshape
(
shape
[:
-
1
]
+
output
.
shape
[
-
1
:])
output
=
output
.
view
(
shape
[:
-
1
]
+
output
.
shape
[
-
1
:])
return
output
return
output
...
@@ -876,7 +876,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
...
@@ -876,7 +876,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
# pack batch
# pack batch
shape
=
specgram
.
size
()
shape
=
specgram
.
size
()
specgram
=
specgram
.
reshape
([
-
1
]
+
list
(
shape
[
-
2
:]))
specgram
=
specgram
.
view
([
-
1
]
+
list
(
shape
[
-
2
:]))
value
=
torch
.
rand
(
1
)
*
mask_param
value
=
torch
.
rand
(
1
)
*
mask_param
min_value
=
torch
.
rand
(
1
)
*
(
specgram
.
size
(
axis
)
-
value
)
min_value
=
torch
.
rand
(
1
)
*
(
specgram
.
size
(
axis
)
-
value
)
...
@@ -893,7 +893,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
...
@@ -893,7 +893,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
raise
ValueError
(
'Only Frequency and Time masking are supported'
)
raise
ValueError
(
'Only Frequency and Time masking are supported'
)
# unpack batch
# unpack batch
specgram
=
specgram
.
reshape
(
shape
[:
-
2
]
+
specgram
.
shape
[
-
2
:])
specgram
=
specgram
.
view
(
shape
[:
-
2
]
+
specgram
.
shape
[
-
2
:])
return
specgram
return
specgram
...
@@ -925,7 +925,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
...
@@ -925,7 +925,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
# pack batch
# pack batch
shape
=
specgram
.
size
()
shape
=
specgram
.
size
()
specgram
=
specgram
.
reshape
(
1
,
-
1
,
shape
[
-
1
])
specgram
=
specgram
.
view
(
1
,
-
1
,
shape
[
-
1
])
assert
win_length
>=
3
assert
win_length
>=
3
...
@@ -945,7 +945,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
...
@@ -945,7 +945,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
output
=
torch
.
nn
.
functional
.
conv1d
(
specgram
,
kernel
,
groups
=
specgram
.
shape
[
1
])
/
denom
output
=
torch
.
nn
.
functional
.
conv1d
(
specgram
,
kernel
,
groups
=
specgram
.
shape
[
1
])
/
denom
# unpack batch
# unpack batch
output
=
output
.
reshape
(
shape
)
output
=
output
.
view
(
shape
)
return
output
return
output
...
@@ -974,11 +974,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
...
@@ -974,11 +974,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
error[n] = dithered[n] - original[n]
error[n] = dithered[n] - original[n]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
"""
"""
wf_shape
=
waveform
.
size
()
waveform
=
waveform
.
view
(
-
1
,
waveform
.
size
()[
-
1
])
waveform
=
waveform
.
reshape
(
-
1
,
wf_shape
[
-
1
])
dithered_shape
=
dithered_waveform
.
size
()
dithered_shape
=
dithered_waveform
.
size
()
dithered_waveform
=
dithered_waveform
.
reshape
(
-
1
,
dithered_shape
[
-
1
])
dithered_waveform
=
dithered_waveform
.
view
(
-
1
,
dithered_shape
[
-
1
])
error
=
dithered_waveform
-
waveform
error
=
dithered_waveform
-
waveform
...
@@ -989,7 +988,7 @@ def _add_noise_shaping(dithered_waveform, waveform):
...
@@ -989,7 +988,7 @@ def _add_noise_shaping(dithered_waveform, waveform):
error
[
index
]
=
error_offset
[:
waveform
.
size
()[
1
]]
error
[
index
]
=
error_offset
[:
waveform
.
size
()[
1
]]
noise_shaped
=
dithered_waveform
+
error
noise_shaped
=
dithered_waveform
+
error
return
noise_shaped
.
reshape
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
return
noise_shaped
.
view
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
def
_apply_probability_distribution
(
waveform
,
density_function
=
"TPDF"
):
def
_apply_probability_distribution
(
waveform
,
density_function
=
"TPDF"
):
...
@@ -1020,7 +1019,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
...
@@ -1020,7 +1019,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
# pack batch
# pack batch
shape
=
waveform
.
size
()
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
channel_size
=
waveform
.
size
()[
0
]
-
1
channel_size
=
waveform
.
size
()[
0
]
-
1
time_size
=
waveform
.
size
()[
-
1
]
-
1
time_size
=
waveform
.
size
()[
-
1
]
-
1
...
@@ -1060,7 +1059,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
...
@@ -1060,7 +1059,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
quantised_signal
=
quantised_signal_scaled
/
down_scaling
quantised_signal
=
quantised_signal_scaled
/
down_scaling
# unpack batch
# unpack batch
return
quantised_signal
.
reshape
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
return
quantised_signal
.
view
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
def
dither
(
waveform
,
density_function
=
"TPDF"
,
noise_shaping
=
False
):
def
dither
(
waveform
,
density_function
=
"TPDF"
,
noise_shaping
=
False
):
...
@@ -1231,7 +1230,7 @@ def detect_pitch_frequency(
...
@@ -1231,7 +1230,7 @@ def detect_pitch_frequency(
# pack batch
# pack batch
shape
=
list
(
waveform
.
size
())
shape
=
list
(
waveform
.
size
())
waveform
=
waveform
.
reshape
([
-
1
]
+
shape
[
-
1
:])
waveform
=
waveform
.
view
([
-
1
]
+
shape
[
-
1
:])
nccf
=
_compute_nccf
(
waveform
,
sample_rate
,
frame_time
,
freq_low
)
nccf
=
_compute_nccf
(
waveform
,
sample_rate
,
frame_time
,
freq_low
)
indices
=
_find_max_per_frame
(
nccf
,
sample_rate
,
freq_high
)
indices
=
_find_max_per_frame
(
nccf
,
sample_rate
,
freq_high
)
...
@@ -1242,6 +1241,6 @@ def detect_pitch_frequency(
...
@@ -1242,6 +1241,6 @@ def detect_pitch_frequency(
freq
=
sample_rate
/
(
EPSILON
+
indices
.
to
(
torch
.
float
))
freq
=
sample_rate
/
(
EPSILON
+
indices
.
to
(
torch
.
float
))
# unpack batch
# unpack batch
freq
=
freq
.
reshape
(
shape
[:
-
1
]
+
list
(
freq
.
shape
[
-
1
:]))
freq
=
freq
.
view
(
shape
[:
-
1
]
+
list
(
freq
.
shape
[
-
1
:]))
return
freq
return
freq
torchaudio/transforms.py
View file @
60fd113c
...
@@ -215,7 +215,7 @@ class MelScale(torch.nn.Module):
...
@@ -215,7 +215,7 @@ class MelScale(torch.nn.Module):
# pack batch
# pack batch
shape
=
specgram
.
size
()
shape
=
specgram
.
size
()
specgram
=
specgram
.
reshape
(
-
1
,
shape
[
-
2
],
shape
[
-
1
])
specgram
=
specgram
.
view
(
-
1
,
shape
[
-
2
],
shape
[
-
1
])
if
self
.
fb
.
numel
()
==
0
:
if
self
.
fb
.
numel
()
==
0
:
tmp_fb
=
F
.
create_fb_matrix
(
specgram
.
size
(
1
),
self
.
f_min
,
self
.
f_max
,
self
.
n_mels
,
self
.
sample_rate
)
tmp_fb
=
F
.
create_fb_matrix
(
specgram
.
size
(
1
),
self
.
f_min
,
self
.
f_max
,
self
.
n_mels
,
self
.
sample_rate
)
...
@@ -228,7 +228,7 @@ class MelScale(torch.nn.Module):
...
@@ -228,7 +228,7 @@ class MelScale(torch.nn.Module):
mel_specgram
=
torch
.
matmul
(
specgram
.
transpose
(
1
,
2
),
self
.
fb
).
transpose
(
1
,
2
)
mel_specgram
=
torch
.
matmul
(
specgram
.
transpose
(
1
,
2
),
self
.
fb
).
transpose
(
1
,
2
)
# unpack batch
# unpack batch
mel_specgram
=
mel_specgram
.
reshape
(
shape
[:
-
2
]
+
mel_specgram
.
shape
[
-
2
:])
mel_specgram
=
mel_specgram
.
view
(
shape
[:
-
2
]
+
mel_specgram
.
shape
[
-
2
:])
return
mel_specgram
return
mel_specgram
...
@@ -349,7 +349,7 @@ class MFCC(torch.nn.Module):
...
@@ -349,7 +349,7 @@ class MFCC(torch.nn.Module):
# pack batch
# pack batch
shape
=
waveform
.
size
()
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
mel_specgram
=
self
.
MelSpectrogram
(
waveform
)
mel_specgram
=
self
.
MelSpectrogram
(
waveform
)
if
self
.
log_mels
:
if
self
.
log_mels
:
...
@@ -362,7 +362,7 @@ class MFCC(torch.nn.Module):
...
@@ -362,7 +362,7 @@ class MFCC(torch.nn.Module):
mfcc
=
torch
.
matmul
(
mel_specgram
.
transpose
(
1
,
2
),
self
.
dct_mat
).
transpose
(
1
,
2
)
mfcc
=
torch
.
matmul
(
mel_specgram
.
transpose
(
1
,
2
),
self
.
dct_mat
).
transpose
(
1
,
2
)
# unpack batch
# unpack batch
mfcc
=
mfcc
.
reshape
(
shape
[:
-
1
]
+
mfcc
.
shape
[
-
2
:])
mfcc
=
mfcc
.
view
(
shape
[:
-
1
]
+
mfcc
.
shape
[
-
2
:])
return
mfcc
return
mfcc
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment