| `Return()` | Return from a `void` mock function. |
| `Return(value)` | Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed. |
| `ReturnArg<N>()` | Return the `N`-th (0-based) argument. |
| `ReturnNew<T>(a1, ..., ak)` | Return `new T(a1, ..., ak)`; a different object is created each time. |
| `ReturnNull()` | Return a null pointer. |
| `ReturnPointee(ptr)` | Return the value pointed to by `ptr`. |
| `ReturnRef(variable)` | Return a reference to `variable`. |
| `ReturnRefOfCopy(value)` | Return a reference to a copy of `value`; the copy lives as long as the action. |
| `ReturnRoundRobin({a1, ..., ak})` | Each call will return the next `ai` in the list, starting at the beginning when the end of the list is reached. |
| `Assign(&variable, value)` | Assign `value` to variable. |
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
| `SetArgReferee<N>(value)` | Assign `value` to the variable referenced by the `N`-th (0-based) argument. |
| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed by the `N`-th (0-based) argument. |
| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0. |
| `SetArrayArgument<N>(first, last)` | Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range. |
| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return `value`. |
| `Throw(exception)` | Throws the given exception, which can be any copyable value. Available since v1.1.0. |
## Using a Function, Functor, or Lambda as an Action
In the following, by "callable" we mean a free function, `std::function`,
| `f` | Invoke f with the arguments passed to the mock function, where f is a callable. |
| `Invoke(f)` | Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor. |
| `Invoke(object_pointer, &class::method)` | Invoke the method on the object with the arguments passed to the mock function. |
| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
| `InvokeWithoutArgs(object_pointer, &class::method)` | Invoke the method on the object, which takes no arguments. |
| `InvokeArgument<N>(arg1, arg2, ..., argk)` | Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments. |
The return value of the invoked function is used as the return value of the
action.
When defining a callable to be used with `Invoke*()`, you can declare any unused
| `DoAll(a1, a2, ..., an)` | Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void and will receive a readonly view of the arguments. |
| `IgnoreResult(a)` | Perform action `a` and ignore its result. `a` must not return void. |
| `WithArg<N>(a)` | Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
| `WithoutArgs(a)` | Perform action `a` without any arguments. |
| `IsTrue()` | `argument` evaluates to `true` in a Boolean context. |
| `IsNull()` | `argument` is a `NULL` pointer (raw or smart). |
| `NotNull()` | `argument` is a non-null pointer (raw or smart). |
| `Optional(m)` | `argument` is `optional<>` that contains a value matching `m`. |
| `Optional(m)` | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
| `VariantWith<T>(m)` | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
| `Ref(variable)` | `argument` is a reference to `variable`. |
| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
<!-- mdformat on -->
Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
destructed later. If the compiler complains that `value` doesn't have a public
copy constructor, try wrap it in `ByRef()`, e.g.
`Eq(ByRef(non_copyable_value))`. If you do that, make sure `non_copyable_value`
is not changed afterwards, or the meaning of your matcher will be changed.
copy constructor, try wrap it in `std::ref()`, e.g.
`Eq(std::ref(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your matcher
will be changed.
`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
that can be explicitly converted to Boolean, but are not implicitly converted to
Boolean. In other cases, you can use the basic
[`EXPECT_TRUE` and `EXPECT_FALSE`](assertions.md#boolean) assertions.
| `DoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
| `FloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
| `NanSensitiveFloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
<!-- mdformat on -->
#### String Matchers
## String Matchers
The `argument` can be either a C string or a C++ string object:
| `ContainsRegex(string)` | `argument` matches the given regular expression. |
| `EndsWith(suffix)` | `argument` ends with string `suffix`. |
| `HasSubstr(string)` | `argument` contains `string` as a sub-string. |
| `IsEmpty()` | `argument` is an empty string. |
| `MatchesRegex(string)` | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
| `StartsWith(prefix)` | `argument` starts with string `prefix`. |
| `StrCaseEq(string)` | `argument` is equal to `string`, ignoring case. |
| `StrCaseNe(string)` | `argument` is not equal to `string`, ignoring case. |
| `StrEq(string)` | `argument` is equal to `string`. |
| `StrNe(string)` | `argument` is not equal to `string`. |
<!-- mdformat on -->
`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
...
...
@@ -355,7 +129,6 @@ messages, you can use:
| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
<!-- mdformat on -->
**Notes:**
...
...
@@ -366,10 +139,11 @@ messages, you can use:
int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
* The array being matched may be multi-dimensional (i.e. its elements can be
arrays).
*`m` in `Pointwise(m, ...)` should be a matcher for `::std::tuple<T, U>`
where `T` and `U` are the element type of the actual container and the
expected container, respectively. For example, to compare two `Foo`
containers where `Foo` doesn't support `operator==`, one might write:
*`m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
the actual container and the expected container, respectively. For example,
to compare two `Foo` containers where `Foo` doesn't support `operator==`,
| `Field(&class::field, m)` | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
| `Key(e)` | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
| `Pair(m1, m2)` | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
<!-- mdformat on -->
| `FieldsAre(m...)` | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
**Notes:**
* You can use `FieldsAre()` to match any type that supports structured
bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
types. For example:
#### Matching the Result of a Function, Functor, or Callback
| `Address(m)` | the result of `std::addressof(argument)` matches `m`. |
| `Pointee(m)` | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
| `Pointer(m)` | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
<!-- mdformat on -->
<!-- GOOGLETEST_CM0026 DO NOT DELETE -->
<!-- GOOGLETEST_CM0027 DO NOT DELETE -->
#### Multi-argument Matchers {#MultiArgMatchers}
## Multi-argument Matchers {#MultiArgMatchers}
Technically, all matchers match a *single* value. A "multi-argument" matcher is
just one that matches a *tuple*. The following matchers can be used to match a
...
...
@@ -430,18 +221,15 @@ Matcher | Description
You can use the following selectors to pick a subset of the arguments (or
| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
...
...
@@ -449,42 +237,33 @@ You can make a matcher from one or more other matchers:
| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
| `Not(m)` | `argument` doesn't match matcher `m`. |
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. |
| `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
<!-- mdformat on -->
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
**Notes:**
...
...
@@ -494,288 +273,11 @@ which must be a permanent callback.
being matched and the matcher parameters).
3. You can use `PrintToString(x)` to convert a value `x` of any type to a
string.
4. You can use `ExplainMatchResult()` in a custom matcher to wrap another
matcher, for example:
### Actions {#ActionList}
**Actions** specify what a mock function should do when invoked.
| `Return()` | Return from a `void` mock function. |
| `Return(value)` | Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed. |
| `ReturnArg<N>()` | Return the `N`-th (0-based) argument. |
| `ReturnNew<T>(a1, ..., ak)` | Return `new T(a1, ..., ak)`; a different object is created each time. |
| `ReturnNull()` | Return a null pointer. |
| `ReturnPointee(ptr)` | Return the value pointed to by `ptr`. |
| `ReturnRef(variable)` | Return a reference to `variable`. |
| `ReturnRefOfCopy(value)` | Return a reference to a copy of `value`; the copy lives as long as the action. |
| `Assign(&variable, value)` | Assign `value` to variable. |
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
| `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. |
| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed by the `N`-th (0-based) argument. |
| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0. |
| `SetArrayArgument<N>(first, last)` | Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range. |
| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return `value`. |
| `Throw(exception)` | Throws the given exception, which can be any copyable value. Available since v1.1.0. |
<!-- mdformat on -->
#### Using a Function, Functor, or Lambda as an Action
In the following, by "callable" we mean a free function, `std::function`,
| `f` | Invoke f with the arguments passed to the mock function, where f is a callable. |
| `Invoke(f)` | Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor. |
| `Invoke(object_pointer, &class::method)` | Invoke the method on the object with the arguments passed to the mock function. |
| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
| `InvokeWithoutArgs(object_pointer, &class::method)` | Invoke the method on the object, which takes no arguments. |
| `InvokeArgument<N>(arg1, arg2, ..., argk)` | Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments. |
<!-- mdformat on -->
The return value of the invoked function is used as the return value of the
action.
When defining a callable to be used with `Invoke*()`, you can declare any unused
| `DoAll(a1, a2, ..., an)` | Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |
| `IgnoreResult(a)` | Perform action `a` and ignore its result. `a` must not return void. |
| `WithArg<N>(a)` | Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
| `WithoutArgs(a)` | Perform action `a` without any arguments. |
| `const` | Makes the mocked method a `const` method. Required if overriding a `const` method. |
| `override` | Marks the method with `override`. Recommended if overriding a `virtual` method. |
| `noexcept` | Marks the method with `noexcept`. Required if overriding a `noexcept` method. |
| `Calltype(`*`calltype`*`)` | Sets the call type for the method, for example `Calltype(STDMETHODCALLTYPE)`. Useful on Windows. |
| `ref(`*`qualifier`*`)` | Marks the method with the given reference qualifier, for example `ref(&)` or `ref(&&)`. Required if overriding a method that has a reference qualifier. |
Note that commas in arguments prevent `MOCK_METHOD` from parsing the arguments
correctly if they are not appropriately surrounded by parentheses. See the
following example:
```cpp
classMyMock{
public:
// The following 2 lines will not compile due to commas in the arguments:
| `ValuesIn(container)` or `ValuesIn(begin,end)` | Yields values from a C-style array, an STL-style container, or an iterator range `[begin, end)`. |
| `Bool()` | Yields sequence `{false, true}`. |
| `Combine(g1, g2, ..., gN)` | Yields as `std::tuple`*n*-tuples all combinations (Cartesian product) of the values generated by the given *n* generators `g1`, `g2`, ..., `gN`. |
The optional last argument *`name_generator`* is a function or functor that
generates custom test name suffixes based on the test parameters. The function
must accept an argument of type
[`TestParamInfo<class ParamType>`](#TestParamInfo) and return a `std::string`.
The test name suffix can only contain alphanumeric characters and underscores.
GoogleTest provides [`PrintToStringParamName`](#PrintToStringParamName), or a