Commit 45322566 authored by Jesse Beder's avatar Jesse Beder
Browse files

Set the eol style to native for all files.

parent a45f083e
#pragma once
#include <vector>
#include <string>
#include <ios>
namespace YAML
{
struct Stream;
enum REGEX_OP { REGEX_EMPTY, REGEX_MATCH, REGEX_RANGE, REGEX_OR, REGEX_AND, REGEX_NOT, REGEX_SEQ };
// simplified regular expressions
// . Only straightforward matches (no repeated characters)
// . Only matches from start of string
class RegEx
{
private:
struct Operator {
virtual ~Operator() {}
virtual int Match(const std::string& str, const RegEx& regex) const = 0;
virtual int Match(std::istream& in, const RegEx& regex) const = 0;
};
struct MatchOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct RangeOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct OrOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct AndOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct NotOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct SeqOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
public:
friend struct Operator;
RegEx();
RegEx(char ch);
RegEx(char a, char z);
RegEx(const std::string& str, REGEX_OP op = REGEX_SEQ);
RegEx(const RegEx& rhs);
~RegEx();
RegEx& operator = (const RegEx& rhs);
bool Matches(char ch) const;
bool Matches(const std::string& str) const;
bool Matches(std::istream& in) const;
bool Matches(Stream& in) const;
int Match(const std::string& str) const;
int Match(std::istream& in) const;
int Match(Stream& in) const;
friend RegEx operator ! (const RegEx& ex);
friend RegEx operator || (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator && (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator + (const RegEx& ex1, const RegEx& ex2);
private:
RegEx(REGEX_OP op);
void SetOp();
private:
REGEX_OP m_op;
Operator *m_pOp;
char m_a, m_z;
std::vector <RegEx> m_params;
};
}
#pragma once
#include <vector>
#include <string>
#include <ios>
namespace YAML
{
struct Stream;
enum REGEX_OP { REGEX_EMPTY, REGEX_MATCH, REGEX_RANGE, REGEX_OR, REGEX_AND, REGEX_NOT, REGEX_SEQ };
// simplified regular expressions
// . Only straightforward matches (no repeated characters)
// . Only matches from start of string
class RegEx
{
private:
struct Operator {
virtual ~Operator() {}
virtual int Match(const std::string& str, const RegEx& regex) const = 0;
virtual int Match(std::istream& in, const RegEx& regex) const = 0;
};
struct MatchOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct RangeOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct OrOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct AndOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct NotOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
struct SeqOperator: public Operator {
virtual int Match(const std::string& str, const RegEx& regex) const;
virtual int Match(std::istream& in, const RegEx& regex) const;
};
public:
friend struct Operator;
RegEx();
RegEx(char ch);
RegEx(char a, char z);
RegEx(const std::string& str, REGEX_OP op = REGEX_SEQ);
RegEx(const RegEx& rhs);
~RegEx();
RegEx& operator = (const RegEx& rhs);
bool Matches(char ch) const;
bool Matches(const std::string& str) const;
bool Matches(std::istream& in) const;
bool Matches(Stream& in) const;
int Match(const std::string& str) const;
int Match(std::istream& in) const;
int Match(Stream& in) const;
friend RegEx operator ! (const RegEx& ex);
friend RegEx operator || (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator && (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator + (const RegEx& ex1, const RegEx& ex2);
private:
RegEx(REGEX_OP op);
void SetOp();
private:
REGEX_OP m_op;
Operator *m_pOp;
char m_a, m_z;
std::vector <RegEx> m_params;
};
}
#include "crt.h"
#include "scalar.h"
#include "scanner.h"
#include "token.h"
#include "exceptions.h"
#include "node.h"
#include <sstream>
namespace YAML
{
Scalar::Scalar()
{
}
Scalar::~Scalar()
{
}
void Scalar::Parse(Scanner *pScanner, const ParserState& state)
{
Token& token = pScanner->peek();
m_data = token.value;
pScanner->pop();
}
void Scalar::Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine)
{
out << "\"";
for(unsigned i=0;i<m_data.size();i++) {
switch(m_data[i]) {
case '\\': out << "\\\\"; break;
case '\t': out << "\\t"; break;
case '\n': out << "\\n"; break;
case '\r': out << "\\r"; break;
default: out << m_data[i]; break;
}
}
out << "\"\n";
}
void Scalar::Read(std::string& s)
{
s = m_data;
}
void Scalar::Read(int& i)
{
std::stringstream data(m_data);
data >> i;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(unsigned& u)
{
std::stringstream data(m_data);
data >> u;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(long& l)
{
std::stringstream data(m_data);
data >> l;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(float& f)
{
std::stringstream data(m_data);
data >> f;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(double& d)
{
std::stringstream data(m_data);
data >> d;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(char& c)
{
std::stringstream data(m_data);
data >> c;
if(!data)
throw InvalidScalar();
}
int Scalar::Compare(Content *pContent)
{
return -pContent->Compare(this);
}
int Scalar::Compare(Scalar *pScalar)
{
if(m_data < pScalar->m_data)
return -1;
else if(m_data > pScalar->m_data)
return 1;
else
return 0;
}
}
#include "crt.h"
#include "scalar.h"
#include "scanner.h"
#include "token.h"
#include "exceptions.h"
#include "node.h"
#include <sstream>
namespace YAML
{
Scalar::Scalar()
{
}
Scalar::~Scalar()
{
}
void Scalar::Parse(Scanner *pScanner, const ParserState& state)
{
Token& token = pScanner->peek();
m_data = token.value;
pScanner->pop();
}
void Scalar::Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine)
{
out << "\"";
for(unsigned i=0;i<m_data.size();i++) {
switch(m_data[i]) {
case '\\': out << "\\\\"; break;
case '\t': out << "\\t"; break;
case '\n': out << "\\n"; break;
case '\r': out << "\\r"; break;
default: out << m_data[i]; break;
}
}
out << "\"\n";
}
void Scalar::Read(std::string& s)
{
s = m_data;
}
void Scalar::Read(int& i)
{
std::stringstream data(m_data);
data >> i;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(unsigned& u)
{
std::stringstream data(m_data);
data >> u;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(long& l)
{
std::stringstream data(m_data);
data >> l;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(float& f)
{
std::stringstream data(m_data);
data >> f;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(double& d)
{
std::stringstream data(m_data);
data >> d;
if(!data)
throw InvalidScalar();
}
void Scalar::Read(char& c)
{
std::stringstream data(m_data);
data >> c;
if(!data)
throw InvalidScalar();
}
int Scalar::Compare(Content *pContent)
{
return -pContent->Compare(this);
}
int Scalar::Compare(Scalar *pScalar)
{
if(m_data < pScalar->m_data)
return -1;
else if(m_data > pScalar->m_data)
return 1;
else
return 0;
}
}
#pragma once
#include "content.h"
#include <string>
namespace YAML
{
class Scalar: public Content
{
public:
Scalar();
virtual ~Scalar();
virtual void Parse(Scanner *pScanner, const ParserState& state);
virtual void Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine);
virtual bool IsScalar() const { return true; }
// extraction
virtual void Read(std::string& s);
virtual void Read(int& i);
virtual void Read(unsigned& u);
virtual void Read(long& l);
virtual void Read(float& f);
virtual void Read(double& d);
virtual void Read(char& c);
// ordering
virtual int Compare(Content *pContent);
virtual int Compare(Scalar *pScalar);
virtual int Compare(Sequence *pSeq) { return -1; }
virtual int Compare(Map *pMap) { return -1; }
protected:
std::string m_data;
};
}
#pragma once
#include "content.h"
#include <string>
namespace YAML
{
class Scalar: public Content
{
public:
Scalar();
virtual ~Scalar();
virtual void Parse(Scanner *pScanner, const ParserState& state);
virtual void Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine);
virtual bool IsScalar() const { return true; }
// extraction
virtual void Read(std::string& s);
virtual void Read(int& i);
virtual void Read(unsigned& u);
virtual void Read(long& l);
virtual void Read(float& f);
virtual void Read(double& d);
virtual void Read(char& c);
// ordering
virtual int Compare(Content *pContent);
virtual int Compare(Scalar *pScalar);
virtual int Compare(Sequence *pSeq) { return -1; }
virtual int Compare(Map *pMap) { return -1; }
protected:
std::string m_data;
};
}
#include "crt.h"
#include "scanner.h"
#include "token.h"
#include "exceptions.h"
#include "exp.h"
#include <cassert>
namespace YAML
{
Scanner::Scanner(std::istream& in)
: INPUT(in), m_startedStream(false), m_endedStream(false), m_simpleKeyAllowed(false), m_flowLevel(0)
{
}
Scanner::~Scanner()
{
}
// empty
// . Returns true if there are no more tokens to be read
bool Scanner::empty()
{
EnsureTokensInQueue();
return m_tokens.empty();
}
// pop
// . Simply removes the next token on the queue.
void Scanner::pop()
{
EnsureTokensInQueue();
if(!m_tokens.empty())
m_tokens.pop();
}
// peek
// . Returns (but does not remove) the next token on the queue.
Token& Scanner::peek()
{
EnsureTokensInQueue();
assert(!m_tokens.empty()); // should we be asserting here? I mean, we really just be checking
// if it's empty before peeking.
return m_tokens.front();
}
// EnsureTokensInQueue
// . Scan until there's a valid token at the front of the queue,
// or we're sure the queue is empty.
void Scanner::EnsureTokensInQueue()
{
while(1) {
if(!m_tokens.empty()) {
Token& token = m_tokens.front();
// if this guy's valid, then we're done
if(token.status == TS_VALID)
return;
// here's where we clean up the impossible tokens
if(token.status == TS_INVALID) {
m_tokens.pop();
continue;
}
// note: what's left are the unverified tokens
}
// no token? maybe we've actually finished
if(m_endedStream)
return;
// no? then scan...
ScanNextToken();
}
}
// ScanNextToken
// . The main scanning function; here we branch out and
// scan whatever the next token should be.
void Scanner::ScanNextToken()
{
if(m_endedStream)
return;
if(!m_startedStream)
return StartStream();
// get rid of whitespace, etc. (in between tokens it should be irrelevent)
ScanToNextToken();
// check the latest simple key
VerifySimpleKey();
// maybe need to end some blocks
PopIndentTo(INPUT.column);
// *****
// And now branch based on the next few characters!
// *****
// end of stream
if(INPUT.peek() == EOF)
return EndStream();
if(INPUT.column == 0 && INPUT.peek() == Keys::Directive)
return ScanDirective();
// document token
if(INPUT.column == 0 && Exp::DocStart.Matches(INPUT))
return ScanDocStart();
if(INPUT.column == 0 && Exp::DocEnd.Matches(INPUT))
return ScanDocEnd();
// flow start/end/entry
if(INPUT.peek() == Keys::FlowSeqStart || INPUT.peek() == Keys::FlowMapStart)
return ScanFlowStart();
if(INPUT.peek() == Keys::FlowSeqEnd || INPUT.peek() == Keys::FlowMapEnd)
return ScanFlowEnd();
if(INPUT.peek() == Keys::FlowEntry)
return ScanFlowEntry();
// block/map stuff
if(Exp::BlockEntry.Matches(INPUT))
return ScanBlockEntry();
if((m_flowLevel == 0 ? Exp::Key : Exp::KeyInFlow).Matches(INPUT))
return ScanKey();
if((m_flowLevel == 0 ? Exp::Value : Exp::ValueInFlow).Matches(INPUT))
return ScanValue();
// alias/anchor
if(INPUT.peek() == Keys::Alias || INPUT.peek() == Keys::Anchor)
return ScanAnchorOrAlias();
// tag
if(INPUT.peek() == Keys::Tag)
return ScanTag();
// special scalars
if(m_flowLevel == 0 && (INPUT.peek() == Keys::LiteralScalar || INPUT.peek() == Keys::FoldedScalar))
return ScanBlockScalar();
if(INPUT.peek() == '\'' || INPUT.peek() == '\"')
return ScanQuotedScalar();
// plain scalars
if((m_flowLevel == 0 ? Exp::PlainScalar : Exp::PlainScalarInFlow).Matches(INPUT))
return ScanPlainScalar();
// don't know what it is!
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::UNKNOWN_TOKEN);
}
// ScanToNextToken
// . Eats input until we reach the next token-like thing.
void Scanner::ScanToNextToken()
{
while(1) {
// first eat whitespace
while(IsWhitespaceToBeEaten(INPUT.peek()))
INPUT.eat(1);
// then eat a comment
if(Exp::Comment.Matches(INPUT)) {
// eat until line break
while(INPUT && !Exp::Break.Matches(INPUT))
INPUT.eat(1);
}
// if it's NOT a line break, then we're done!
if(!Exp::Break.Matches(INPUT))
break;
// otherwise, let's eat the line break and keep going
int n = Exp::Break.Match(INPUT);
INPUT.eat(n);
// oh yeah, and let's get rid of that simple key
VerifySimpleKey();
// new line - we may be able to accept a simple key now
if(m_flowLevel == 0)
m_simpleKeyAllowed = true;
}
}
///////////////////////////////////////////////////////////////////////
// Misc. helpers
// IsWhitespaceToBeEaten
// . We can eat whitespace if:
// 1. It's a space
// 2. It's a tab, and we're either:
// a. In the flow context
// b. In the block context but not where a simple key could be allowed
// (i.e., not at the beginning of a line, or following '-', '?', or ':')
bool Scanner::IsWhitespaceToBeEaten(char ch)
{
if(ch == ' ')
return true;
if(ch == '\t' && (m_flowLevel >= 0 || !m_simpleKeyAllowed))
return true;
return false;
}
// StartStream
// . Set the initial conditions for starting a stream.
void Scanner::StartStream()
{
m_startedStream = true;
m_simpleKeyAllowed = true;
m_indents.push(-1);
}
// EndStream
// . Close out the stream, finish up, etc.
void Scanner::EndStream()
{
// force newline
if(INPUT.column > 0)
INPUT.column = 0;
PopIndentTo(-1);
VerifyAllSimpleKeys();
m_simpleKeyAllowed = false;
m_endedStream = true;
}
// PushIndentTo
// . Pushes an indentation onto the stack, and enqueues the
// proper token (sequence start or mapping start).
// . Returns the token it generates (if any).
Token *Scanner::PushIndentTo(int column, bool sequence)
{
// are we in flow?
if(m_flowLevel > 0)
return 0;
// is this actually an indentation?
if(column <= m_indents.top())
return 0;
// now push
m_indents.push(column);
if(sequence)
m_tokens.push(Token(TT_BLOCK_SEQ_START, INPUT.line, INPUT.column));
else
m_tokens.push(Token(TT_BLOCK_MAP_START, INPUT.line, INPUT.column));
return &m_tokens.back();
}
// PopIndentTo
// . Pops indentations off the stack until we reach 'column' indentation,
// and enqueues the proper token each time.
void Scanner::PopIndentTo(int column)
{
// are we in flow?
if(m_flowLevel > 0)
return;
// now pop away
while(!m_indents.empty() && m_indents.top() > column) {
m_indents.pop();
m_tokens.push(Token(TT_BLOCK_END, INPUT.line, INPUT.column));
}
}
}
#include "crt.h"
#include "scanner.h"
#include "token.h"
#include "exceptions.h"
#include "exp.h"
#include <cassert>
namespace YAML
{
Scanner::Scanner(std::istream& in)
: INPUT(in), m_startedStream(false), m_endedStream(false), m_simpleKeyAllowed(false), m_flowLevel(0)
{
}
Scanner::~Scanner()
{
}
// empty
// . Returns true if there are no more tokens to be read
bool Scanner::empty()
{
EnsureTokensInQueue();
return m_tokens.empty();
}
// pop
// . Simply removes the next token on the queue.
void Scanner::pop()
{
EnsureTokensInQueue();
if(!m_tokens.empty())
m_tokens.pop();
}
// peek
// . Returns (but does not remove) the next token on the queue.
Token& Scanner::peek()
{
EnsureTokensInQueue();
assert(!m_tokens.empty()); // should we be asserting here? I mean, we really just be checking
// if it's empty before peeking.
return m_tokens.front();
}
// EnsureTokensInQueue
// . Scan until there's a valid token at the front of the queue,
// or we're sure the queue is empty.
void Scanner::EnsureTokensInQueue()
{
while(1) {
if(!m_tokens.empty()) {
Token& token = m_tokens.front();
// if this guy's valid, then we're done
if(token.status == TS_VALID)
return;
// here's where we clean up the impossible tokens
if(token.status == TS_INVALID) {
m_tokens.pop();
continue;
}
// note: what's left are the unverified tokens
}
// no token? maybe we've actually finished
if(m_endedStream)
return;
// no? then scan...
ScanNextToken();
}
}
// ScanNextToken
// . The main scanning function; here we branch out and
// scan whatever the next token should be.
void Scanner::ScanNextToken()
{
if(m_endedStream)
return;
if(!m_startedStream)
return StartStream();
// get rid of whitespace, etc. (in between tokens it should be irrelevent)
ScanToNextToken();
// check the latest simple key
VerifySimpleKey();
// maybe need to end some blocks
PopIndentTo(INPUT.column);
// *****
// And now branch based on the next few characters!
// *****
// end of stream
if(INPUT.peek() == EOF)
return EndStream();
if(INPUT.column == 0 && INPUT.peek() == Keys::Directive)
return ScanDirective();
// document token
if(INPUT.column == 0 && Exp::DocStart.Matches(INPUT))
return ScanDocStart();
if(INPUT.column == 0 && Exp::DocEnd.Matches(INPUT))
return ScanDocEnd();
// flow start/end/entry
if(INPUT.peek() == Keys::FlowSeqStart || INPUT.peek() == Keys::FlowMapStart)
return ScanFlowStart();
if(INPUT.peek() == Keys::FlowSeqEnd || INPUT.peek() == Keys::FlowMapEnd)
return ScanFlowEnd();
if(INPUT.peek() == Keys::FlowEntry)
return ScanFlowEntry();
// block/map stuff
if(Exp::BlockEntry.Matches(INPUT))
return ScanBlockEntry();
if((m_flowLevel == 0 ? Exp::Key : Exp::KeyInFlow).Matches(INPUT))
return ScanKey();
if((m_flowLevel == 0 ? Exp::Value : Exp::ValueInFlow).Matches(INPUT))
return ScanValue();
// alias/anchor
if(INPUT.peek() == Keys::Alias || INPUT.peek() == Keys::Anchor)
return ScanAnchorOrAlias();
// tag
if(INPUT.peek() == Keys::Tag)
return ScanTag();
// special scalars
if(m_flowLevel == 0 && (INPUT.peek() == Keys::LiteralScalar || INPUT.peek() == Keys::FoldedScalar))
return ScanBlockScalar();
if(INPUT.peek() == '\'' || INPUT.peek() == '\"')
return ScanQuotedScalar();
// plain scalars
if((m_flowLevel == 0 ? Exp::PlainScalar : Exp::PlainScalarInFlow).Matches(INPUT))
return ScanPlainScalar();
// don't know what it is!
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::UNKNOWN_TOKEN);
}
// ScanToNextToken
// . Eats input until we reach the next token-like thing.
void Scanner::ScanToNextToken()
{
while(1) {
// first eat whitespace
while(IsWhitespaceToBeEaten(INPUT.peek()))
INPUT.eat(1);
// then eat a comment
if(Exp::Comment.Matches(INPUT)) {
// eat until line break
while(INPUT && !Exp::Break.Matches(INPUT))
INPUT.eat(1);
}
// if it's NOT a line break, then we're done!
if(!Exp::Break.Matches(INPUT))
break;
// otherwise, let's eat the line break and keep going
int n = Exp::Break.Match(INPUT);
INPUT.eat(n);
// oh yeah, and let's get rid of that simple key
VerifySimpleKey();
// new line - we may be able to accept a simple key now
if(m_flowLevel == 0)
m_simpleKeyAllowed = true;
}
}
///////////////////////////////////////////////////////////////////////
// Misc. helpers
// IsWhitespaceToBeEaten
// . We can eat whitespace if:
// 1. It's a space
// 2. It's a tab, and we're either:
// a. In the flow context
// b. In the block context but not where a simple key could be allowed
// (i.e., not at the beginning of a line, or following '-', '?', or ':')
bool Scanner::IsWhitespaceToBeEaten(char ch)
{
if(ch == ' ')
return true;
if(ch == '\t' && (m_flowLevel >= 0 || !m_simpleKeyAllowed))
return true;
return false;
}
// StartStream
// . Set the initial conditions for starting a stream.
void Scanner::StartStream()
{
m_startedStream = true;
m_simpleKeyAllowed = true;
m_indents.push(-1);
}
// EndStream
// . Close out the stream, finish up, etc.
void Scanner::EndStream()
{
// force newline
if(INPUT.column > 0)
INPUT.column = 0;
PopIndentTo(-1);
VerifyAllSimpleKeys();
m_simpleKeyAllowed = false;
m_endedStream = true;
}
// PushIndentTo
// . Pushes an indentation onto the stack, and enqueues the
// proper token (sequence start or mapping start).
// . Returns the token it generates (if any).
Token *Scanner::PushIndentTo(int column, bool sequence)
{
// are we in flow?
if(m_flowLevel > 0)
return 0;
// is this actually an indentation?
if(column <= m_indents.top())
return 0;
// now push
m_indents.push(column);
if(sequence)
m_tokens.push(Token(TT_BLOCK_SEQ_START, INPUT.line, INPUT.column));
else
m_tokens.push(Token(TT_BLOCK_MAP_START, INPUT.line, INPUT.column));
return &m_tokens.back();
}
// PopIndentTo
// . Pops indentations off the stack until we reach 'column' indentation,
// and enqueues the proper token each time.
void Scanner::PopIndentTo(int column)
{
// are we in flow?
if(m_flowLevel > 0)
return;
// now pop away
while(!m_indents.empty() && m_indents.top() > column) {
m_indents.pop();
m_tokens.push(Token(TT_BLOCK_END, INPUT.line, INPUT.column));
}
}
}
#pragma once
#include <ios>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include "stream.h"
#include "token.h"
namespace YAML
{
class Scanner
{
public:
Scanner(std::istream& in);
~Scanner();
// token queue management (hopefully this looks kinda stl-ish)
bool empty();
void pop();
Token& peek();
private:
// scanning
void EnsureTokensInQueue();
void ScanNextToken();
void ScanToNextToken();
void StartStream();
void EndStream();
Token *PushIndentTo(int column, bool sequence);
void PopIndentTo(int column);
// checking input
void InsertSimpleKey();
bool VerifySimpleKey();
void VerifyAllSimpleKeys();
bool IsWhitespaceToBeEaten(char ch);
struct SimpleKey {
SimpleKey(int pos_, int line_, int column_, int flowLevel_);
void Validate();
void Invalidate();
int pos, line, column, flowLevel;
Token *pMapStart, *pKey;
};
// and the tokens
void ScanDirective();
void ScanDocStart();
void ScanDocEnd();
void ScanBlockSeqStart();
void ScanBlockMapSTart();
void ScanBlockEnd();
void ScanBlockEntry();
void ScanFlowStart();
void ScanFlowEnd();
void ScanFlowEntry();
void ScanKey();
void ScanValue();
void ScanAnchorOrAlias();
void ScanTag();
void ScanPlainScalar();
void ScanQuotedScalar();
void ScanBlockScalar();
private:
// the stream
Stream INPUT;
// the output (tokens)
std::queue <Token> m_tokens;
// state info
bool m_startedStream, m_endedStream;
bool m_simpleKeyAllowed;
int m_flowLevel; // number of unclosed '[' and '{' indicators
bool m_isLastKeyValid;
std::stack <SimpleKey> m_simpleKeys;
std::stack <int> m_indents;
};
}
#pragma once
#include <ios>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include "stream.h"
#include "token.h"
namespace YAML
{
class Scanner
{
public:
Scanner(std::istream& in);
~Scanner();
// token queue management (hopefully this looks kinda stl-ish)
bool empty();
void pop();
Token& peek();
private:
// scanning
void EnsureTokensInQueue();
void ScanNextToken();
void ScanToNextToken();
void StartStream();
void EndStream();
Token *PushIndentTo(int column, bool sequence);
void PopIndentTo(int column);
// checking input
void InsertSimpleKey();
bool VerifySimpleKey();
void VerifyAllSimpleKeys();
bool IsWhitespaceToBeEaten(char ch);
struct SimpleKey {
SimpleKey(int pos_, int line_, int column_, int flowLevel_);
void Validate();
void Invalidate();
int pos, line, column, flowLevel;
Token *pMapStart, *pKey;
};
// and the tokens
void ScanDirective();
void ScanDocStart();
void ScanDocEnd();
void ScanBlockSeqStart();
void ScanBlockMapSTart();
void ScanBlockEnd();
void ScanBlockEntry();
void ScanFlowStart();
void ScanFlowEnd();
void ScanFlowEntry();
void ScanKey();
void ScanValue();
void ScanAnchorOrAlias();
void ScanTag();
void ScanPlainScalar();
void ScanQuotedScalar();
void ScanBlockScalar();
private:
// the stream
Stream INPUT;
// the output (tokens)
std::queue <Token> m_tokens;
// state info
bool m_startedStream, m_endedStream;
bool m_simpleKeyAllowed;
int m_flowLevel; // number of unclosed '[' and '{' indicators
bool m_isLastKeyValid;
std::stack <SimpleKey> m_simpleKeys;
std::stack <int> m_indents;
};
}
#include "crt.h"
#include "scanscalar.h"
#include "scanner.h"
#include "exp.h"
#include "exceptions.h"
#include "token.h"
namespace YAML
{
// ScanScalar
// . This is where the scalar magic happens.
//
// . We do the scanning in three phases:
// 1. Scan until newline
// 2. Eat newline
// 3. Scan leading blanks.
//
// . Depending on the parameters given, we store or stop
// and different places in the above flow.
std::string ScanScalar(Stream& INPUT, ScanScalarParams& params)
{
bool foundNonEmptyLine = false, pastOpeningBreak = false;
bool emptyLine = false, moreIndented = false;
std::string scalar;
params.leadingSpaces = false;
while(INPUT) {
// ********************************
// Phase #1: scan until line ending
while(!params.end.Matches(INPUT) && !Exp::Break.Matches(INPUT)) {
if(INPUT.peek() == EOF)
break;
// document indicator?
if(INPUT.column == 0 && Exp::DocIndicator.Matches(INPUT)) {
if(params.onDocIndicator == BREAK)
break;
else if(params.onDocIndicator == THROW)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::DOC_IN_SCALAR);
}
foundNonEmptyLine = true;
pastOpeningBreak = true;
// escaped newline? (only if we're escaping on slash)
if(params.escape == '\\' && Exp::EscBreak.Matches(INPUT)) {
int n = Exp::EscBreak.Match(INPUT);
INPUT.eat(n);
continue;
}
// escape this?
if(INPUT.peek() == params.escape) {
scalar += Exp::Escape(INPUT);
continue;
}
// otherwise, just add the damn character
scalar += INPUT.get();
}
// eof? if we're looking to eat something, then we throw
if(INPUT.peek() == EOF) {
if(params.eatEnd)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::EOF_IN_SCALAR);
break;
}
// doc indicator?
if(params.onDocIndicator == BREAK && INPUT.column == 0 && Exp::DocIndicator.Matches(INPUT))
break;
// are we done via character match?
int n = params.end.Match(INPUT);
if(n >= 0) {
if(params.eatEnd)
INPUT.eat(n);
break;
}
// ********************************
// Phase #2: eat line ending
n = Exp::Break.Match(INPUT);
INPUT.eat(n);
// ********************************
// Phase #3: scan initial spaces
// first the required indentation
while(INPUT.peek() == ' ' && (INPUT.column < params.indent || (params.detectIndent && !foundNonEmptyLine)))
INPUT.eat(1);
// update indent if we're auto-detecting
if(params.detectIndent && !foundNonEmptyLine)
params.indent = std::max(params.indent, INPUT.column);
// and then the rest of the whitespace
while(Exp::Blank.Matches(INPUT)) {
// we check for tabs that masquerade as indentation
if(INPUT.peek() == '\t'&& INPUT.column < params.indent && params.onTabInIndentation == THROW)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::TAB_IN_INDENTATION);
if(!params.eatLeadingWhitespace)
break;
INPUT.eat(1);
}
// was this an empty line?
bool nextEmptyLine = Exp::Break.Matches(INPUT);
bool nextMoreIndented = (INPUT.peek() == ' ');
// for block scalars, we always start with a newline, so we should ignore it (not fold or keep)
bool useNewLine = pastOpeningBreak;
// and for folded scalars, we don't fold the very last newline to a space
if(params.fold && !emptyLine && INPUT.column < params.indent)
useNewLine = false;
if(useNewLine) {
if(params.fold && !emptyLine && !nextEmptyLine && !moreIndented && !nextMoreIndented)
scalar += " ";
else
scalar += "\n";
}
emptyLine = nextEmptyLine;
moreIndented = nextMoreIndented;
pastOpeningBreak = true;
// are we done via indentation?
if(!emptyLine && INPUT.column < params.indent) {
params.leadingSpaces = true;
break;
}
}
// post-processing
if(params.trimTrailingSpaces) {
unsigned pos = scalar.find_last_not_of(' ');
if(pos < scalar.size())
scalar.erase(pos + 1);
}
if(params.chomp <= 0) {
unsigned pos = scalar.find_last_not_of('\n');
if(params.chomp == 0 && pos + 1 < scalar.size())
scalar.erase(pos + 2);
else if(params.chomp == -1 && pos < scalar.size())
scalar.erase(pos + 1);
}
return scalar;
}
}
#include "crt.h"
#include "scanscalar.h"
#include "scanner.h"
#include "exp.h"
#include "exceptions.h"
#include "token.h"
namespace YAML
{
// ScanScalar
// . This is where the scalar magic happens.
//
// . We do the scanning in three phases:
// 1. Scan until newline
// 2. Eat newline
// 3. Scan leading blanks.
//
// . Depending on the parameters given, we store or stop
// and different places in the above flow.
std::string ScanScalar(Stream& INPUT, ScanScalarParams& params)
{
bool foundNonEmptyLine = false, pastOpeningBreak = false;
bool emptyLine = false, moreIndented = false;
std::string scalar;
params.leadingSpaces = false;
while(INPUT) {
// ********************************
// Phase #1: scan until line ending
while(!params.end.Matches(INPUT) && !Exp::Break.Matches(INPUT)) {
if(INPUT.peek() == EOF)
break;
// document indicator?
if(INPUT.column == 0 && Exp::DocIndicator.Matches(INPUT)) {
if(params.onDocIndicator == BREAK)
break;
else if(params.onDocIndicator == THROW)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::DOC_IN_SCALAR);
}
foundNonEmptyLine = true;
pastOpeningBreak = true;
// escaped newline? (only if we're escaping on slash)
if(params.escape == '\\' && Exp::EscBreak.Matches(INPUT)) {
int n = Exp::EscBreak.Match(INPUT);
INPUT.eat(n);
continue;
}
// escape this?
if(INPUT.peek() == params.escape) {
scalar += Exp::Escape(INPUT);
continue;
}
// otherwise, just add the damn character
scalar += INPUT.get();
}
// eof? if we're looking to eat something, then we throw
if(INPUT.peek() == EOF) {
if(params.eatEnd)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::EOF_IN_SCALAR);
break;
}
// doc indicator?
if(params.onDocIndicator == BREAK && INPUT.column == 0 && Exp::DocIndicator.Matches(INPUT))
break;
// are we done via character match?
int n = params.end.Match(INPUT);
if(n >= 0) {
if(params.eatEnd)
INPUT.eat(n);
break;
}
// ********************************
// Phase #2: eat line ending
n = Exp::Break.Match(INPUT);
INPUT.eat(n);
// ********************************
// Phase #3: scan initial spaces
// first the required indentation
while(INPUT.peek() == ' ' && (INPUT.column < params.indent || (params.detectIndent && !foundNonEmptyLine)))
INPUT.eat(1);
// update indent if we're auto-detecting
if(params.detectIndent && !foundNonEmptyLine)
params.indent = std::max(params.indent, INPUT.column);
// and then the rest of the whitespace
while(Exp::Blank.Matches(INPUT)) {
// we check for tabs that masquerade as indentation
if(INPUT.peek() == '\t'&& INPUT.column < params.indent && params.onTabInIndentation == THROW)
throw ParserException(INPUT.line, INPUT.column, ErrorMsg::TAB_IN_INDENTATION);
if(!params.eatLeadingWhitespace)
break;
INPUT.eat(1);
}
// was this an empty line?
bool nextEmptyLine = Exp::Break.Matches(INPUT);
bool nextMoreIndented = (INPUT.peek() == ' ');
// for block scalars, we always start with a newline, so we should ignore it (not fold or keep)
bool useNewLine = pastOpeningBreak;
// and for folded scalars, we don't fold the very last newline to a space
if(params.fold && !emptyLine && INPUT.column < params.indent)
useNewLine = false;
if(useNewLine) {
if(params.fold && !emptyLine && !nextEmptyLine && !moreIndented && !nextMoreIndented)
scalar += " ";
else
scalar += "\n";
}
emptyLine = nextEmptyLine;
moreIndented = nextMoreIndented;
pastOpeningBreak = true;
// are we done via indentation?
if(!emptyLine && INPUT.column < params.indent) {
params.leadingSpaces = true;
break;
}
}
// post-processing
if(params.trimTrailingSpaces) {
unsigned pos = scalar.find_last_not_of(' ');
if(pos < scalar.size())
scalar.erase(pos + 1);
}
if(params.chomp <= 0) {
unsigned pos = scalar.find_last_not_of('\n');
if(params.chomp == 0 && pos + 1 < scalar.size())
scalar.erase(pos + 2);
else if(params.chomp == -1 && pos < scalar.size())
scalar.erase(pos + 1);
}
return scalar;
}
}
#pragma once
#include <string>
#include "regex.h"
#include "stream.h"
namespace YAML
{
enum CHOMP { STRIP = -1, CLIP, KEEP };
enum ACTION { NONE, BREAK, THROW };
struct ScanScalarParams {
ScanScalarParams(): eatEnd(false), indent(0), detectIndent(false), eatLeadingWhitespace(0), escape(0), fold(false),
trimTrailingSpaces(0), chomp(CLIP), onDocIndicator(NONE), onTabInIndentation(NONE), leadingSpaces(false) {}
// input:
RegEx end; // what condition ends this scalar?
bool eatEnd; // should we eat that condition when we see it?
int indent; // what level of indentation should be eaten and ignored?
bool detectIndent; // should we try to autodetect the indent?
bool eatLeadingWhitespace; // should we continue eating this delicious indentation after 'indent' spaces?
char escape; // what character do we escape on (i.e., slash or single quote) (0 for none)
bool fold; // do we fold line ends?
bool trimTrailingSpaces; // do we remove all trailing spaces (at the very end)
CHOMP chomp; // do we strip, clip, or keep trailing newlines (at the very end)
// Note: strip means kill all, clip means keep at most one, keep means keep all
ACTION onDocIndicator; // what do we do if we see a document indicator?
ACTION onTabInIndentation; // what do we do if we see a tab where we should be seeing indentation spaces
// output:
bool leadingSpaces;
};
std::string ScanScalar(Stream& INPUT, ScanScalarParams& info);
}
#pragma once
#include <string>
#include "regex.h"
#include "stream.h"
namespace YAML
{
enum CHOMP { STRIP = -1, CLIP, KEEP };
enum ACTION { NONE, BREAK, THROW };
struct ScanScalarParams {
ScanScalarParams(): eatEnd(false), indent(0), detectIndent(false), eatLeadingWhitespace(0), escape(0), fold(false),
trimTrailingSpaces(0), chomp(CLIP), onDocIndicator(NONE), onTabInIndentation(NONE), leadingSpaces(false) {}
// input:
RegEx end; // what condition ends this scalar?
bool eatEnd; // should we eat that condition when we see it?
int indent; // what level of indentation should be eaten and ignored?
bool detectIndent; // should we try to autodetect the indent?
bool eatLeadingWhitespace; // should we continue eating this delicious indentation after 'indent' spaces?
char escape; // what character do we escape on (i.e., slash or single quote) (0 for none)
bool fold; // do we fold line ends?
bool trimTrailingSpaces; // do we remove all trailing spaces (at the very end)
CHOMP chomp; // do we strip, clip, or keep trailing newlines (at the very end)
// Note: strip means kill all, clip means keep at most one, keep means keep all
ACTION onDocIndicator; // what do we do if we see a document indicator?
ACTION onTabInIndentation; // what do we do if we see a tab where we should be seeing indentation spaces
// output:
bool leadingSpaces;
};
std::string ScanScalar(Stream& INPUT, ScanScalarParams& info);
}
This diff is collapsed.
This diff is collapsed.
#pragma once
#include "content.h"
#include <vector>
namespace YAML
{
class Node;
class Sequence: public Content
{
public:
Sequence();
virtual ~Sequence();
void Clear();
virtual bool GetBegin(std::vector <Node *>::const_iterator& it) const;
virtual bool GetEnd(std::vector <Node *>::const_iterator& it) const;
virtual Node *GetNode(unsigned i) const;
virtual unsigned GetSize() const;
virtual void Parse(Scanner *pScanner, const ParserState& state);
virtual void Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine);
virtual bool IsSequence() const { return true; }
// ordering
virtual int Compare(Content *pContent);
virtual int Compare(Scalar *pScalar) { return 1; }
virtual int Compare(Sequence *pSeq);
virtual int Compare(Map *pMap) { return -1; }
private:
void ParseBlock(Scanner *pScanner, const ParserState& state);
void ParseImplicit(Scanner *pScanner, const ParserState& state);
void ParseFlow(Scanner *pScanner, const ParserState& state);
protected:
std::vector <Node *> m_data;
};
}
#pragma once
#include "content.h"
#include <vector>
namespace YAML
{
class Node;
class Sequence: public Content
{
public:
Sequence();
virtual ~Sequence();
void Clear();
virtual bool GetBegin(std::vector <Node *>::const_iterator& it) const;
virtual bool GetEnd(std::vector <Node *>::const_iterator& it) const;
virtual Node *GetNode(unsigned i) const;
virtual unsigned GetSize() const;
virtual void Parse(Scanner *pScanner, const ParserState& state);
virtual void Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine);
virtual bool IsSequence() const { return true; }
// ordering
virtual int Compare(Content *pContent);
virtual int Compare(Scalar *pScalar) { return 1; }
virtual int Compare(Sequence *pSeq);
virtual int Compare(Map *pMap) { return -1; }
private:
void ParseBlock(Scanner *pScanner, const ParserState& state);
void ParseImplicit(Scanner *pScanner, const ParserState& state);
void ParseFlow(Scanner *pScanner, const ParserState& state);
protected:
std::vector <Node *> m_data;
};
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment