Unverified Commit 120863ba authored by Romain Deterre's avatar Romain Deterre Committed by GitHub
Browse files

Update Google Test to v1.10.0 (#840)

This commit updates the version of Google Test from 1.8 to 1.10.
parent b2f89386
......@@ -26,8 +26,7 @@
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: vladl@google.com (Vlad Losev)
// Google Mock - a framework for writing C++ mock classes.
//
......@@ -90,8 +89,10 @@
// Field
// Property
// ResultOf(function)
// ResultOf(callback)
// Pointee
// Truly(predicate)
// AddressSatisfies
// AllOf
// AnyOf
// Not
......@@ -120,13 +121,15 @@
# include <errno.h>
#endif
#include "gmock/internal/gmock-port.h"
#include "gtest/gtest.h"
#include <iostream>
#include <vector>
#include "gtest/gtest.h"
#include "gtest/internal/gtest-port.h"
using testing::_;
using testing::A;
using testing::Action;
using testing::AllOf;
using testing::AnyOf;
using testing::Assign;
......@@ -148,6 +151,8 @@ using testing::Invoke;
using testing::InvokeArgument;
using testing::InvokeWithoutArgs;
using testing::IsNull;
using testing::IsSubsetOf;
using testing::IsSupersetOf;
using testing::Le;
using testing::Lt;
using testing::Matcher;
......@@ -243,7 +248,7 @@ TEST(LinkTest, TestReturnVoid) {
Mock mock;
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(Return());
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the Return action.
......@@ -252,7 +257,7 @@ TEST(LinkTest, TestReturn) {
char ch = 'x';
EXPECT_CALL(mock, StringFromString(_)).WillOnce(Return(&ch));
mock.StringFromString(NULL);
mock.StringFromString(nullptr);
}
// Tests the linkage of the ReturnNull action.
......@@ -260,7 +265,7 @@ TEST(LinkTest, TestReturnNull) {
Mock mock;
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(Return());
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the ReturnRef action.
......@@ -269,7 +274,7 @@ TEST(LinkTest, TestReturnRef) {
int n = 42;
EXPECT_CALL(mock, IntRefFromString(_)).WillOnce(ReturnRef(n));
mock.IntRefFromString(NULL);
mock.IntRefFromString(nullptr);
}
// Tests the linkage of the Assign action.
......@@ -278,7 +283,7 @@ TEST(LinkTest, TestAssign) {
char ch = 'x';
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(Assign(&ch, 'y'));
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the SetArgPointee action.
......@@ -309,7 +314,7 @@ TEST(LinkTest, TestSetErrnoAndReturn) {
int saved_errno = errno;
EXPECT_CALL(mock, IntFromString(_)).WillOnce(SetErrnoAndReturn(1, -1));
mock.IntFromString(NULL);
mock.IntFromString(nullptr);
errno = saved_errno;
}
......@@ -323,8 +328,8 @@ TEST(LinkTest, TestInvoke) {
EXPECT_CALL(mock, VoidFromString(_))
.WillOnce(Invoke(&InvokeHelper::StaticVoidFromString))
.WillOnce(Invoke(&test_invoke_helper, &InvokeHelper::VoidFromString));
mock.VoidFromString(NULL);
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the InvokeWithoutArgs action.
......@@ -336,8 +341,8 @@ TEST(LinkTest, TestInvokeWithoutArgs) {
.WillOnce(InvokeWithoutArgs(&InvokeHelper::StaticVoidFromVoid))
.WillOnce(InvokeWithoutArgs(&test_invoke_helper,
&InvokeHelper::VoidFromVoid));
mock.VoidFromString(NULL);
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the InvokeArgument action.
......@@ -355,7 +360,7 @@ TEST(LinkTest, TestWithArg) {
EXPECT_CALL(mock, VoidFromString(_))
.WillOnce(WithArg<0>(Invoke(&InvokeHelper::StaticVoidFromString)));
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the WithArgs action.
......@@ -364,7 +369,7 @@ TEST(LinkTest, TestWithArgs) {
EXPECT_CALL(mock, VoidFromString(_))
.WillOnce(WithArgs<0>(Invoke(&InvokeHelper::StaticVoidFromString)));
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the WithoutArgs action.
......@@ -372,7 +377,7 @@ TEST(LinkTest, TestWithoutArgs) {
Mock mock;
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(WithoutArgs(Return()));
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
// Tests the linkage of the DoAll action.
......@@ -400,7 +405,7 @@ TEST(LinkTest, TestIgnoreResult) {
Mock mock;
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(IgnoreResult(Return(42)));
mock.VoidFromString(NULL);
mock.VoidFromString(nullptr);
}
#if GTEST_HAS_EXCEPTIONS
......@@ -409,7 +414,7 @@ TEST(LinkTest, TestThrow) {
Mock mock;
EXPECT_CALL(mock, VoidFromString(_)).WillOnce(Throw(42));
EXPECT_THROW(mock.VoidFromString(NULL), int);
EXPECT_THROW(mock.VoidFromString(nullptr), int);
}
#endif // GTEST_HAS_EXCEPTIONS
......@@ -432,7 +437,7 @@ TEST(LinkTest, TestActionMacro) {
Mock mock;
EXPECT_CALL(mock, IntFromString(_)).WillOnce(Return1());
mock.IntFromString(NULL);
mock.IntFromString(nullptr);
}
// Tests the linkage of actions created using ACTION_P macro.
......@@ -444,7 +449,7 @@ TEST(LinkTest, TestActionPMacro) {
Mock mock;
EXPECT_CALL(mock, IntFromString(_)).WillOnce(ReturnArgument(42));
mock.IntFromString(NULL);
mock.IntFromString(nullptr);
}
// Tests the linkage of actions created using ACTION_P2 macro.
......@@ -592,6 +597,22 @@ TEST(LinkTest, TestMatcherElementsAreArray) {
ON_CALL(mock, VoidFromVector(ElementsAreArray(arr))).WillByDefault(Return());
}
// Tests the linkage of the IsSubsetOf matcher.
TEST(LinkTest, TestMatcherIsSubsetOf) {
Mock mock;
char arr[] = {'a', 'b'};
ON_CALL(mock, VoidFromVector(IsSubsetOf(arr))).WillByDefault(Return());
}
// Tests the linkage of the IsSupersetOf matcher.
TEST(LinkTest, TestMatcherIsSupersetOf) {
Mock mock;
char arr[] = {'a', 'b'};
ON_CALL(mock, VoidFromVector(IsSupersetOf(arr))).WillByDefault(Return());
}
// Tests the linkage of the ContainerEq matcher.
TEST(LinkTest, TestMatcherContainerEq) {
Mock mock;
......@@ -625,7 +646,7 @@ TEST(LinkTest, TestMatcherProperty) {
// Tests the linkage of the ResultOf matcher.
TEST(LinkTest, TestMatcherResultOf) {
Matcher<char*> m = ResultOf(&InvokeHelper::StaticIntFromString, Eq(1));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_TRUE(m.Matches(nullptr));
}
// Tests the linkage of the ResultOf matcher.
......@@ -639,7 +660,7 @@ TEST(LinkTest, TestMatcherPointee) {
// Tests the linkage of the Truly matcher.
TEST(LinkTest, TestMatcherTruly) {
Matcher<const char*> m = Truly(&InvokeHelper::StaticBoolFromString);
EXPECT_TRUE(m.Matches(NULL));
EXPECT_TRUE(m.Matches(nullptr));
}
// Tests the linkage of the AllOf matcher.
......@@ -663,7 +684,7 @@ TEST(LinkTest, TestMatcherNot) {
// Tests the linkage of the MatcherCast<T>() function.
TEST(LinkTest, TestMatcherCast) {
Matcher<const char*> m = MatcherCast<const char*>(_);
EXPECT_TRUE(m.Matches(NULL));
EXPECT_TRUE(m.Matches(nullptr));
}
#endif // GMOCK_TEST_GMOCK_LINK_TEST_H_
......@@ -29,21 +29,20 @@
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Tests the text output of Google C++ Mocking Framework.
r"""Tests the text output of Google C++ Mocking Framework.
SYNOPSIS
gmock_output_test.py --build_dir=BUILD/DIR --gengolden
# where BUILD/DIR contains the built gmock_output_test_ file.
gmock_output_test.py --gengolden
gmock_output_test.py
"""
To update the golden file:
gmock_output_test.py --build_dir=BUILD/DIR --gengolden
where BUILD/DIR contains the built gmock_output_test_ file.
gmock_output_test.py --gengolden
gmock_output_test.py
__author__ = 'wan@google.com (Zhanyong Wan)'
"""
from io import open # pylint: disable=redefined-builtin, g-importing-member
import os
import re
import sys
import gmock_test_utils
......@@ -154,10 +153,11 @@ def GetNormalizedCommandOutputAndLeakyTests(cmd):
class GMockOutputTest(gmock_test_utils.TestCase):
def testOutput(self):
(output, leaky_tests) = GetNormalizedCommandOutputAndLeakyTests(COMMAND)
golden_file = open(GOLDEN_PATH, 'rb')
golden = golden_file.read()
golden = golden_file.read().decode('utf-8')
golden_file.close()
# The normalized output should match the golden file.
......@@ -176,5 +176,8 @@ if __name__ == '__main__':
golden_file = open(GOLDEN_PATH, 'wb')
golden_file.write(output)
golden_file.close()
# Suppress the error "googletest was imported but a call to its main()
# was never detected."
os._exit(0)
else:
gmock_test_utils.Main()
......@@ -26,8 +26,7 @@
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Tests Google Mock's output in various scenarios. This ensures that
// Google Mock's messages are readable and useful.
......@@ -39,6 +38,12 @@
#include "gtest/gtest.h"
// Silence C4100 (unreferenced formal parameter)
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
using testing::_;
using testing::AnyNumber;
using testing::Ge;
......@@ -47,6 +52,7 @@ using testing::NaggyMock;
using testing::Ref;
using testing::Return;
using testing::Sequence;
using testing::Value;
class MockFoo {
public:
......@@ -268,6 +274,15 @@ TEST_F(GMockOutputTest, CatchesLeakedMocks) {
// Both foo1 and foo2 are deliberately leaked.
}
MATCHER_P2(IsPair, first, second, "") {
return Value(arg.first, first) && Value(arg.second, second);
}
TEST_F(GMockOutputTest, PrintsMatcher) {
const testing::Matcher<int> m1 = Ge(48);
EXPECT_THAT((std::pair<int, bool>(42, true)), IsPair(m1, true));
}
void TestCatchesLeakedMocksInAdHocTests() {
MockFoo* foo = new MockFoo;
......@@ -280,7 +295,6 @@ void TestCatchesLeakedMocksInAdHocTests() {
int main(int argc, char **argv) {
testing::InitGoogleMock(&argc, argv);
// Ensures that the tests pass no matter what value of
// --gmock_catch_leaked_mocks and --gmock_verbose the user specifies.
testing::GMOCK_FLAG(catch_leaked_mocks) = true;
......@@ -289,3 +303,7 @@ int main(int argc, char **argv) {
TestCatchesLeakedMocksInAdHocTests();
return RUN_ALL_TESTS();
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
......@@ -75,14 +75,14 @@ GMOCK WARNING:
Uninteresting mock function call - returning default value.
Function call: Bar2(0, 1)
Returns: false
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/CookBook.md#knowing-when-to-expect for details.
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md#knowing-when-to-expect for details.
[ OK ] GMockOutputTest.UninterestingCall
[ RUN ] GMockOutputTest.UninterestingCallToVoidFunction
GMOCK WARNING:
Uninteresting mock function call - returning directly.
Function call: Bar3(0, 1)
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/CookBook.md#knowing-when-to-expect for details.
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md#knowing-when-to-expect for details.
[ OK ] GMockOutputTest.UninterestingCallToVoidFunction
[ RUN ] GMockOutputTest.RetiredExpectation
unknown file: Failure
......@@ -266,14 +266,14 @@ Uninteresting mock function call - taking default action specified at:
FILE:#:
Function call: Bar2(2, 2)
Returns: true
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/CookBook.md#knowing-when-to-expect for details.
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md#knowing-when-to-expect for details.
GMOCK WARNING:
Uninteresting mock function call - taking default action specified at:
FILE:#:
Function call: Bar2(1, 1)
Returns: false
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/CookBook.md#knowing-when-to-expect for details.
NOTE: You can safely ignore the above warning unless this call should not happen. Do not suppress it by blindly adding an EXPECT_CALL() if you don't mean to enforce the call. See https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md#knowing-when-to-expect for details.
[ OK ] GMockOutputTest.UninterestingCallWithDefaultAction
[ RUN ] GMockOutputTest.ExplicitActionsRunOutWithDefaultAction
......@@ -288,6 +288,12 @@ Stack trace:
[ OK ] GMockOutputTest.ExplicitActionsRunOutWithDefaultAction
[ RUN ] GMockOutputTest.CatchesLeakedMocks
[ OK ] GMockOutputTest.CatchesLeakedMocks
[ RUN ] GMockOutputTest.PrintsMatcher
FILE:#: Failure
Value of: (std::pair<int, bool>(42, true))
Expected: is pair (is >= 48, true)
Actual: (42, true) (of type std::pair<int, bool>)
[ FAILED ] GMockOutputTest.PrintsMatcher
[ FAILED ] GMockOutputTest.UnexpectedCall
[ FAILED ] GMockOutputTest.UnexpectedCallToVoidFunction
[ FAILED ] GMockOutputTest.ExcessiveCall
......@@ -302,9 +308,10 @@ Stack trace:
[ FAILED ] GMockOutputTest.MismatchArgumentsAndWith
[ FAILED ] GMockOutputTest.UnexpectedCallWithDefaultAction
[ FAILED ] GMockOutputTest.ExcessiveCallWithDefaultAction
[ FAILED ] GMockOutputTest.PrintsMatcher
FILE:#: ERROR: this mock object should be deleted but never is. Its address is @0x#.
FILE:#: ERROR: this mock object should be deleted but never is. Its address is @0x#.
FILE:#: ERROR: this mock object should be deleted but never is. Its address is @0x#.
ERROR: 3 leaked mock objects found at program exit.
ERROR: 3 leaked mock objects found at program exit. Expectations on a mock object is verified when the object is destructed. Leaking a mock means that its expectations aren't verified, which is usually a test bug. If you really intend to leak a mock, you can suppress this error using testing::Mock::AllowLeak(mock_object), or you may use a fake or stub instead of a mock.
......@@ -26,8 +26,7 @@
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Tests that Google Mock constructs can be used in a large number of
// threads concurrently.
......@@ -38,7 +37,7 @@
namespace testing {
namespace {
// From <gtest/internal/gtest-port.h>.
// From gtest-port.h.
using ::testing::internal::ThreadWithParam;
// The maximum number of test threads (not including helper threads)
......@@ -51,7 +50,7 @@ const int kRepeat = 50;
class MockFoo {
public:
MOCK_METHOD1(Bar, int(int n)); // NOLINT
MOCK_METHOD2(Baz, char(const char* s1, const internal::string& s2)); // NOLINT
MOCK_METHOD2(Baz, char(const char* s1, const std::string& s2)); // NOLINT
};
// Helper for waiting for the given thread to finish and then deleting it.
......@@ -61,87 +60,8 @@ void JoinAndDelete(ThreadWithParam<T>* t) {
delete t;
}
using internal::linked_ptr;
// Helper classes for testing using linked_ptr concurrently.
class Base {
public:
explicit Base(int a_x) : x_(a_x) {}
virtual ~Base() {}
int x() const { return x_; }
private:
int x_;
};
class Derived1 : public Base {
public:
Derived1(int a_x, int a_y) : Base(a_x), y_(a_y) {}
int y() const { return y_; }
private:
int y_;
};
class Derived2 : public Base {
public:
Derived2(int a_x, int a_z) : Base(a_x), z_(a_z) {}
int z() const { return z_; }
private:
int z_;
};
linked_ptr<Derived1> pointer1(new Derived1(1, 2));
linked_ptr<Derived2> pointer2(new Derived2(3, 4));
struct Dummy {};
// Tests that we can copy from a linked_ptr and read it concurrently.
void TestConcurrentCopyAndReadLinkedPtr(Dummy /* dummy */) {
// Reads pointer1 and pointer2 while they are being copied from in
// another thread.
EXPECT_EQ(1, pointer1->x());
EXPECT_EQ(2, pointer1->y());
EXPECT_EQ(3, pointer2->x());
EXPECT_EQ(4, pointer2->z());
// Copies from pointer1.
linked_ptr<Derived1> p1(pointer1);
EXPECT_EQ(1, p1->x());
EXPECT_EQ(2, p1->y());
// Assigns from pointer2 where the LHS was empty.
linked_ptr<Base> p2;
p2 = pointer1;
EXPECT_EQ(1, p2->x());
// Assigns from pointer2 where the LHS was not empty.
p2 = pointer2;
EXPECT_EQ(3, p2->x());
}
const linked_ptr<Derived1> p0(new Derived1(1, 2));
// Tests that we can concurrently modify two linked_ptrs that point to
// the same object.
void TestConcurrentWriteToEqualLinkedPtr(Dummy /* dummy */) {
// p1 and p2 point to the same, shared thing. One thread resets p1.
// Another thread assigns to p2. This will cause the same
// underlying "ring" to be updated concurrently.
linked_ptr<Derived1> p1(p0);
linked_ptr<Derived1> p2(p0);
EXPECT_EQ(1, p1->x());
EXPECT_EQ(2, p1->y());
EXPECT_EQ(1, p2->x());
EXPECT_EQ(2, p2->y());
p1.reset();
p2 = p0;
EXPECT_EQ(1, p2->x());
EXPECT_EQ(2, p2->y());
}
// Tests that different mock objects can be used in their respective
// threads. This should generate no Google Test failure.
......@@ -211,7 +131,7 @@ void TestConcurrentCallsOnSameObject(Dummy /* dummy */) {
int count1 = 0;
const Helper1Param param = { &foo, &count1 };
ThreadWithParam<Helper1Param>* const t =
new ThreadWithParam<Helper1Param>(Helper1, param, NULL);
new ThreadWithParam<Helper1Param>(Helper1, param, nullptr);
int count2 = 0;
const Helper1Param param2 = { &foo, &count2 };
......@@ -265,7 +185,7 @@ void TestPartiallyOrderedExpectationsWithThreads(Dummy /* dummy */) {
foo.Bar(1);
ThreadWithParam<MockFoo*>* const t =
new ThreadWithParam<MockFoo*>(Helper2, &foo, NULL);
new ThreadWithParam<MockFoo*>(Helper2, &foo, nullptr);
Helper2(&foo);
JoinAndDelete(t);
......@@ -276,8 +196,6 @@ void TestPartiallyOrderedExpectationsWithThreads(Dummy /* dummy */) {
// Tests using Google Mock constructs in many threads concurrently.
TEST(StressTest, CanUseGMockWithThreads) {
void (*test_routines[])(Dummy dummy) = {
&TestConcurrentCopyAndReadLinkedPtr,
&TestConcurrentWriteToEqualLinkedPtr,
&TestConcurrentMockObjects,
&TestConcurrentCallsOnSameObject,
&TestPartiallyOrderedExpectationsWithThreads,
......@@ -289,8 +207,8 @@ TEST(StressTest, CanUseGMockWithThreads) {
ThreadWithParam<Dummy>* threads[kTestThreads] = {};
for (int i = 0; i < kTestThreads; i++) {
// Creates a thread to run the test function.
threads[i] =
new ThreadWithParam<Dummy>(test_routines[i % kRoutines], Dummy(), NULL);
threads[i] = new ThreadWithParam<Dummy>(test_routines[i % kRoutines],
Dummy(), nullptr);
GTEST_LOG_(INFO) << "Thread #" << i << " running . . .";
}
......
......@@ -26,8 +26,7 @@
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
......@@ -37,9 +36,11 @@
#include <string>
#include "gtest/gtest.h"
#include "gtest/internal/custom/gtest.h"
#if !defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
using testing::GMOCK_FLAG(default_mock_behavior);
using testing::GMOCK_FLAG(verbose);
using testing::InitGoogleMock;
......@@ -50,9 +51,9 @@ void TestInitGoogleMock(const Char* (&argv)[M], const Char* (&new_argv)[N],
const ::std::string& expected_gmock_verbose) {
const ::std::string old_verbose = GMOCK_FLAG(verbose);
int argc = M;
int argc = M - 1;
InitGoogleMock(&argc, const_cast<Char**>(argv));
ASSERT_EQ(N, argc) << "The new argv has wrong number of elements.";
ASSERT_EQ(N - 1, argc) << "The new argv has wrong number of elements.";
for (int i = 0; i < N; i++) {
EXPECT_STREQ(new_argv[i], argv[i]);
......@@ -63,149 +64,109 @@ void TestInitGoogleMock(const Char* (&argv)[M], const Char* (&new_argv)[N],
}
TEST(InitGoogleMockTest, ParsesInvalidCommandLine) {
const char* argv[] = {
NULL
};
const char* argv[] = {nullptr};
const char* new_argv[] = {
NULL
};
const char* new_argv[] = {nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(InitGoogleMockTest, ParsesEmptyCommandLine) {
const char* argv[] = {
"foo.exe",
NULL
};
const char* argv[] = {"foo.exe", nullptr};
const char* new_argv[] = {
"foo.exe",
NULL
};
const char* new_argv[] = {"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(InitGoogleMockTest, ParsesSingleFlag) {
const char* argv[] = {
"foo.exe",
"--gmock_verbose=info",
NULL
};
const char* argv[] = {"foo.exe", "--gmock_verbose=info", nullptr};
const char* new_argv[] = {"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, "info");
}
const char* new_argv[] = {
"foo.exe",
NULL
};
TEST(InitGoogleMockTest, ParsesMultipleFlags) {
int old_default_behavior = GMOCK_FLAG(default_mock_behavior);
const wchar_t* argv[] = {L"foo.exe", L"--gmock_verbose=info",
L"--gmock_default_mock_behavior=2", nullptr};
const wchar_t* new_argv[] = {L"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, "info");
EXPECT_EQ(2, GMOCK_FLAG(default_mock_behavior));
EXPECT_NE(2, old_default_behavior);
GMOCK_FLAG(default_mock_behavior) = old_default_behavior;
}
TEST(InitGoogleMockTest, ParsesUnrecognizedFlag) {
const char* argv[] = {
"foo.exe",
"--non_gmock_flag=blah",
NULL
};
const char* new_argv[] = {
"foo.exe",
"--non_gmock_flag=blah",
NULL
};
const char* argv[] = {"foo.exe", "--non_gmock_flag=blah", nullptr};
const char* new_argv[] = {"foo.exe", "--non_gmock_flag=blah", nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(InitGoogleMockTest, ParsesGoogleMockFlagAndUnrecognizedFlag) {
const char* argv[] = {
"foo.exe",
"--non_gmock_flag=blah",
"--gmock_verbose=error",
NULL
};
const char* new_argv[] = {
"foo.exe",
"--non_gmock_flag=blah",
NULL
};
const char* argv[] = {"foo.exe", "--non_gmock_flag=blah",
"--gmock_verbose=error", nullptr};
const char* new_argv[] = {"foo.exe", "--non_gmock_flag=blah", nullptr};
TestInitGoogleMock(argv, new_argv, "error");
}
TEST(WideInitGoogleMockTest, ParsesInvalidCommandLine) {
const wchar_t* argv[] = {
NULL
};
const wchar_t* argv[] = {nullptr};
const wchar_t* new_argv[] = {
NULL
};
const wchar_t* new_argv[] = {nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(WideInitGoogleMockTest, ParsesEmptyCommandLine) {
const wchar_t* argv[] = {
L"foo.exe",
NULL
};
const wchar_t* argv[] = {L"foo.exe", nullptr};
const wchar_t* new_argv[] = {
L"foo.exe",
NULL
};
const wchar_t* new_argv[] = {L"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(WideInitGoogleMockTest, ParsesSingleFlag) {
const wchar_t* argv[] = {
L"foo.exe",
L"--gmock_verbose=info",
NULL
};
const wchar_t* argv[] = {L"foo.exe", L"--gmock_verbose=info", nullptr};
const wchar_t* new_argv[] = {L"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, "info");
}
TEST(WideInitGoogleMockTest, ParsesMultipleFlags) {
int old_default_behavior = GMOCK_FLAG(default_mock_behavior);
const wchar_t* argv[] = {L"foo.exe", L"--gmock_verbose=info",
L"--gmock_default_mock_behavior=2", nullptr};
const wchar_t* new_argv[] = {
L"foo.exe",
NULL
};
const wchar_t* new_argv[] = {L"foo.exe", nullptr};
TestInitGoogleMock(argv, new_argv, "info");
EXPECT_EQ(2, GMOCK_FLAG(default_mock_behavior));
EXPECT_NE(2, old_default_behavior);
GMOCK_FLAG(default_mock_behavior) = old_default_behavior;
}
TEST(WideInitGoogleMockTest, ParsesUnrecognizedFlag) {
const wchar_t* argv[] = {
L"foo.exe",
L"--non_gmock_flag=blah",
NULL
};
const wchar_t* new_argv[] = {
L"foo.exe",
L"--non_gmock_flag=blah",
NULL
};
const wchar_t* argv[] = {L"foo.exe", L"--non_gmock_flag=blah", nullptr};
const wchar_t* new_argv[] = {L"foo.exe", L"--non_gmock_flag=blah", nullptr};
TestInitGoogleMock(argv, new_argv, GMOCK_FLAG(verbose));
}
TEST(WideInitGoogleMockTest, ParsesGoogleMockFlagAndUnrecognizedFlag) {
const wchar_t* argv[] = {
L"foo.exe",
L"--non_gmock_flag=blah",
L"--gmock_verbose=error",
NULL
};
const wchar_t* new_argv[] = {
L"foo.exe",
L"--non_gmock_flag=blah",
NULL
};
const wchar_t* argv[] = {L"foo.exe", L"--non_gmock_flag=blah",
L"--gmock_verbose=error", nullptr};
const wchar_t* new_argv[] = {L"foo.exe", L"--non_gmock_flag=blah", nullptr};
TestInitGoogleMock(argv, new_argv, "error");
}
......
#!/usr/bin/env python
#
# Copyright 2006, Google Inc.
# All rights reserved.
#
......@@ -31,24 +29,22 @@
"""Unit test utilities for Google C++ Mocking Framework."""
__author__ = 'wan@google.com (Zhanyong Wan)'
import os
import sys
# Determines path to gtest_test_utils and imports it.
SCRIPT_DIR = os.path.dirname(__file__) or '.'
# isdir resolves symbolic links.
gtest_tests_util_dir = os.path.join(SCRIPT_DIR, '../gtest/test')
gtest_tests_util_dir = os.path.join(SCRIPT_DIR, '../../googletest/test')
if os.path.isdir(gtest_tests_util_dir):
GTEST_TESTS_UTIL_DIR = gtest_tests_util_dir
else:
GTEST_TESTS_UTIL_DIR = os.path.join(SCRIPT_DIR, '../../gtest/test')
GTEST_TESTS_UTIL_DIR = os.path.join(SCRIPT_DIR, '../../googletest/test')
sys.path.append(GTEST_TESTS_UTIL_DIR)
import gtest_test_utils # pylint: disable-msg=C6204
# pylint: disable=C6204
import gtest_test_utils
def GetSourceDir():
......
########################################################################
# Note: CMake support is community-based. The maintainers do not use CMake
# internally.
#
# CMake build script for Google Test.
#
# To run the tests for Google Test itself on Linux, use 'make test' or
# ctest. You can select which tests to run using 'ctest -R regex'.
# For more options, run 'ctest --help'.
# BUILD_SHARED_LIBS is a standard CMake variable, but we declare it here to
# make it prominent in the GUI.
option(BUILD_SHARED_LIBS "Build shared libraries (DLLs)." OFF)
# When other libraries are using a shared version of runtime libraries,
# Google Test also has to use one.
option(
......@@ -44,13 +43,45 @@ endif()
# as ${gtest_SOURCE_DIR} and to the root binary directory as
# ${gtest_BINARY_DIR}.
# Language "C" is required for find_package(Threads).
project(gtest CXX C)
cmake_minimum_required(VERSION 2.6.2)
# Project version:
if (CMAKE_VERSION VERSION_LESS 3.0)
project(gtest CXX C)
set(PROJECT_VERSION ${GOOGLETEST_VERSION})
else()
cmake_policy(SET CMP0048 NEW)
project(gtest VERSION ${GOOGLETEST_VERSION} LANGUAGES CXX C)
endif()
cmake_minimum_required(VERSION 2.6.4)
if (POLICY CMP0063) # Visibility
cmake_policy(SET CMP0063 NEW)
endif (POLICY CMP0063)
if (COMMAND set_up_hermetic_build)
set_up_hermetic_build()
endif()
# These commands only run if this is the main project
if(CMAKE_PROJECT_NAME STREQUAL "gtest" OR CMAKE_PROJECT_NAME STREQUAL "googletest-distribution")
# BUILD_SHARED_LIBS is a standard CMake variable, but we declare it here to
# make it prominent in the GUI.
option(BUILD_SHARED_LIBS "Build shared libraries (DLLs)." OFF)
else()
mark_as_advanced(
gtest_force_shared_crt
gtest_build_tests
gtest_build_samples
gtest_disable_pthreads
gtest_hide_internal_symbols)
endif()
if (gtest_hide_internal_symbols)
set(CMAKE_CXX_VISIBILITY_PRESET hidden)
set(CMAKE_VISIBILITY_INLINES_HIDDEN 1)
......@@ -61,24 +92,31 @@ include(cmake/internal_utils.cmake)
config_compiler_and_linker() # Defined in internal_utils.cmake.
# Where Google Test's .h files can be found.
include_directories(
${gtest_SOURCE_DIR}/include
${gtest_SOURCE_DIR})
# Where Google Test's libraries can be found.
link_directories(${gtest_BINARY_DIR}/src)
# Summary of tuple support for Microsoft Visual Studio:
# Compiler version(MS) version(cmake) Support
# ---------- ----------- -------------- -----------------------------
# <= VS 2010 <= 10 <= 1600 Use Google Tests's own tuple.
# VS 2012 11 1700 std::tr1::tuple + _VARIADIC_MAX=10
# VS 2013 12 1800 std::tr1::tuple
if (MSVC AND MSVC_VERSION EQUAL 1700)
add_definitions(/D _VARIADIC_MAX=10)
# Create the CMake package file descriptors.
if (INSTALL_GTEST)
include(CMakePackageConfigHelpers)
set(cmake_package_name GTest)
set(targets_export_name ${cmake_package_name}Targets CACHE INTERNAL "")
set(generated_dir "${CMAKE_CURRENT_BINARY_DIR}/generated" CACHE INTERNAL "")
set(cmake_files_install_dir "${CMAKE_INSTALL_LIBDIR}/cmake/${cmake_package_name}")
set(version_file "${generated_dir}/${cmake_package_name}ConfigVersion.cmake")
write_basic_package_version_file(${version_file} VERSION ${GOOGLETEST_VERSION} COMPATIBILITY AnyNewerVersion)
install(EXPORT ${targets_export_name}
NAMESPACE ${cmake_package_name}::
DESTINATION ${cmake_files_install_dir})
set(config_file "${generated_dir}/${cmake_package_name}Config.cmake")
configure_package_config_file("${gtest_SOURCE_DIR}/cmake/Config.cmake.in"
"${config_file}" INSTALL_DESTINATION ${cmake_files_install_dir})
install(FILES ${version_file} ${config_file}
DESTINATION ${cmake_files_install_dir})
endif()
# Where Google Test's .h files can be found.
set(gtest_build_include_dirs
"${gtest_SOURCE_DIR}/include"
"${gtest_SOURCE_DIR}")
include_directories(${gtest_build_include_dirs})
########################################################################
#
# Defines the gtest & gtest_main libraries. User tests should link
......@@ -89,23 +127,23 @@ endif()
# aggressive about warnings.
cxx_library(gtest "${cxx_strict}" src/gtest-all.cc)
cxx_library(gtest_main "${cxx_strict}" src/gtest_main.cc)
target_link_libraries(gtest_main gtest)
# If the CMake version supports it, attach header directory information
# to the targets for when we are part of a parent build (ie being pulled
# in via add_subdirectory() rather than being a standalone build).
if (DEFINED CMAKE_VERSION AND NOT "${CMAKE_VERSION}" VERSION_LESS "2.8.11")
target_include_directories(gtest INTERFACE "${gtest_SOURCE_DIR}/include")
target_include_directories(gtest_main INTERFACE "${gtest_SOURCE_DIR}/include")
target_include_directories(gtest SYSTEM INTERFACE
"$<BUILD_INTERFACE:${gtest_build_include_dirs}>"
"$<INSTALL_INTERFACE:$<INSTALL_PREFIX>/${CMAKE_INSTALL_INCLUDEDIR}>")
target_include_directories(gtest_main SYSTEM INTERFACE
"$<BUILD_INTERFACE:${gtest_build_include_dirs}>"
"$<INSTALL_INTERFACE:$<INSTALL_PREFIX>/${CMAKE_INSTALL_INCLUDEDIR}>")
endif()
target_link_libraries(gtest_main PUBLIC gtest)
########################################################################
#
# Install rules
install(TARGETS gtest gtest_main
DESTINATION lib)
install(DIRECTORY ${gtest_SOURCE_DIR}/include/gtest
DESTINATION include)
install_project(gtest gtest_main)
########################################################################
#
......@@ -144,36 +182,51 @@ if (gtest_build_tests)
# 'make test' or ctest.
enable_testing()
if (WIN32)
file(GENERATE OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG>/RunTest.ps1"
CONTENT
"$project_bin = \"${CMAKE_BINARY_DIR}/bin/$<CONFIG>\"
$env:Path = \"$project_bin;$env:Path\"
& $args")
elseif (MINGW OR CYGWIN)
file(GENERATE OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1"
CONTENT
"$project_bin = (cygpath --windows ${CMAKE_BINARY_DIR}/bin)
$env:Path = \"$project_bin;$env:Path\"
& $args")
endif()
############################################################
# C++ tests built with standard compiler flags.
cxx_test(gtest-death-test_test gtest_main)
cxx_test(googletest-death-test-test gtest_main)
cxx_test(gtest_environment_test gtest)
cxx_test(gtest-filepath_test gtest_main)
cxx_test(gtest-linked_ptr_test gtest_main)
cxx_test(gtest-listener_test gtest_main)
cxx_test(googletest-filepath-test gtest_main)
cxx_test(googletest-listener-test gtest_main)
cxx_test(gtest_main_unittest gtest_main)
cxx_test(gtest-message_test gtest_main)
cxx_test(googletest-message-test gtest_main)
cxx_test(gtest_no_test_unittest gtest)
cxx_test(gtest-options_test gtest_main)
cxx_test(gtest-param-test_test gtest
test/gtest-param-test2_test.cc)
cxx_test(gtest-port_test gtest_main)
cxx_test(googletest-options-test gtest_main)
cxx_test(googletest-param-test-test gtest
test/googletest-param-test2-test.cc)
cxx_test(googletest-port-test gtest_main)
cxx_test(gtest_pred_impl_unittest gtest_main)
cxx_test(gtest_premature_exit_test gtest
test/gtest_premature_exit_test.cc)
cxx_test(gtest-printers_test gtest_main)
cxx_test(googletest-printers-test gtest_main)
cxx_test(gtest_prod_test gtest_main
test/production.cc)
cxx_test(gtest_repeat_test gtest)
cxx_test(gtest_sole_header_test gtest_main)
cxx_test(gtest_stress_test gtest)
cxx_test(gtest-test-part_test gtest_main)
cxx_test(googletest-test-part-test gtest_main)
cxx_test(gtest_throw_on_failure_ex_test gtest)
cxx_test(gtest-typed-test_test gtest_main
test/gtest-typed-test2_test.cc)
cxx_test(gtest_unittest gtest_main)
cxx_test(gtest-unittest-api_test gtest)
cxx_test(gtest_skip_in_environment_setup_test gtest_main)
cxx_test(gtest_skip_test gtest_main)
############################################################
# C++ tests built with non-standard compiler flags.
......@@ -190,10 +243,10 @@ if (gtest_build_tests)
cxx_test_with_flags(gtest-death-test_ex_nocatch_test
"${cxx_exception} -DGTEST_ENABLE_CATCH_EXCEPTIONS_=0"
gtest test/gtest-death-test_ex_test.cc)
gtest test/googletest-death-test_ex_test.cc)
cxx_test_with_flags(gtest-death-test_ex_catch_test
"${cxx_exception} -DGTEST_ENABLE_CATCH_EXCEPTIONS_=1"
gtest test/gtest-death-test_ex_test.cc)
gtest test/googletest-death-test_ex_test.cc)
cxx_test_with_flags(gtest_no_rtti_unittest "${cxx_no_rtti}"
gtest_main_no_rtti test/gtest_unittest.cc)
......@@ -207,80 +260,69 @@ if (gtest_build_tests)
PROPERTIES
COMPILE_DEFINITIONS "GTEST_LINKED_AS_SHARED_LIBRARY=1")
if (NOT MSVC OR MSVC_VERSION LESS 1600) # 1600 is Visual Studio 2010.
# Visual Studio 2010, 2012, and 2013 define symbols in std::tr1 that
# conflict with our own definitions. Therefore using our own tuple does not
# work on those compilers.
cxx_library(gtest_main_use_own_tuple "${cxx_use_own_tuple}"
src/gtest-all.cc src/gtest_main.cc)
cxx_test_with_flags(gtest-tuple_test "${cxx_use_own_tuple}"
gtest_main_use_own_tuple test/gtest-tuple_test.cc)
cxx_test_with_flags(gtest_use_own_tuple_test "${cxx_use_own_tuple}"
gtest_main_use_own_tuple
test/gtest-param-test_test.cc test/gtest-param-test2_test.cc)
endif()
############################################################
# Python tests.
cxx_executable(gtest_break_on_failure_unittest_ test gtest)
py_test(gtest_break_on_failure_unittest)
cxx_executable(googletest-break-on-failure-unittest_ test gtest)
py_test(googletest-break-on-failure-unittest)
py_test(gtest_skip_environment_check_output_test)
# Visual Studio .NET 2003 does not support STL with exceptions disabled.
if (NOT MSVC OR MSVC_VERSION GREATER 1310) # 1310 is Visual Studio .NET 2003
cxx_executable_with_flags(
gtest_catch_exceptions_no_ex_test_
googletest-catch-exceptions-no-ex-test_
"${cxx_no_exception}"
gtest_main_no_exception
test/gtest_catch_exceptions_test_.cc)
test/googletest-catch-exceptions-test_.cc)
endif()
cxx_executable_with_flags(
gtest_catch_exceptions_ex_test_
googletest-catch-exceptions-ex-test_
"${cxx_exception}"
gtest_main
test/gtest_catch_exceptions_test_.cc)
py_test(gtest_catch_exceptions_test)
test/googletest-catch-exceptions-test_.cc)
py_test(googletest-catch-exceptions-test)
cxx_executable(gtest_color_test_ test gtest)
py_test(gtest_color_test)
cxx_executable(googletest-color-test_ test gtest)
py_test(googletest-color-test)
cxx_executable(gtest_env_var_test_ test gtest)
py_test(gtest_env_var_test)
cxx_executable(googletest-env-var-test_ test gtest)
py_test(googletest-env-var-test)
cxx_executable(gtest_filter_unittest_ test gtest)
py_test(gtest_filter_unittest)
cxx_executable(googletest-filter-unittest_ test gtest)
py_test(googletest-filter-unittest)
cxx_executable(gtest_help_test_ test gtest_main)
py_test(gtest_help_test)
cxx_executable(gtest_list_tests_unittest_ test gtest)
py_test(gtest_list_tests_unittest)
cxx_executable(googletest-list-tests-unittest_ test gtest)
py_test(googletest-list-tests-unittest)
cxx_executable(gtest_output_test_ test gtest)
py_test(gtest_output_test)
cxx_executable(googletest-output-test_ test gtest)
py_test(googletest-output-test --no_stacktrace_support)
cxx_executable(gtest_shuffle_test_ test gtest)
py_test(gtest_shuffle_test)
cxx_executable(googletest-shuffle-test_ test gtest)
py_test(googletest-shuffle-test)
# MSVC 7.1 does not support STL with exceptions disabled.
if (NOT MSVC OR MSVC_VERSION GREATER 1310)
cxx_executable(gtest_throw_on_failure_test_ test gtest_no_exception)
set_target_properties(gtest_throw_on_failure_test_
cxx_executable(googletest-throw-on-failure-test_ test gtest_no_exception)
set_target_properties(googletest-throw-on-failure-test_
PROPERTIES
COMPILE_FLAGS "${cxx_no_exception}")
py_test(gtest_throw_on_failure_test)
py_test(googletest-throw-on-failure-test)
endif()
cxx_executable(gtest_uninitialized_test_ test gtest)
py_test(gtest_uninitialized_test)
cxx_executable(googletest-uninitialized-test_ test gtest)
py_test(googletest-uninitialized-test)
cxx_executable(gtest_xml_outfile1_test_ test gtest_main)
cxx_executable(gtest_xml_outfile2_test_ test gtest_main)
py_test(gtest_xml_outfiles_test)
py_test(googletest-json-outfiles-test)
cxx_executable(gtest_xml_output_unittest_ test gtest)
py_test(gtest_xml_output_unittest)
py_test(gtest_xml_output_unittest --no_stacktrace_support)
py_test(googletest-json-output-unittest --no_stacktrace_support)
endif()
Copyright 2008, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
### Generic Build Instructions
#### Setup
To build Google Test and your tests that use it, you need to tell your build
system where to find its headers and source files. The exact way to do it
depends on which build system you use, and is usually straightforward.
### Build with CMake
Google Test comes with a CMake build script (
[CMakeLists.txt](https://github.com/google/googletest/blob/master/CMakeLists.txt))
that can be used on a wide range of platforms ("C" stands for cross-platform.).
If you don't have CMake installed already, you can download it for free from
<http://www.cmake.org/>.
CMake works by generating native makefiles or build projects that can be used in
the compiler environment of your choice. You can either build Google Test as a
standalone project or it can be incorporated into an existing CMake build for
another project.
#### Standalone CMake Project
When building Google Test as a standalone project, the typical workflow starts
with:
mkdir mybuild # Create a directory to hold the build output.
cd mybuild
cmake ${GTEST_DIR} # Generate native build scripts.
If you want to build Google Test's samples, you should replace the last command
with
cmake -Dgtest_build_samples=ON ${GTEST_DIR}
If you are on a \*nix system, you should now see a Makefile in the current
directory. Just type 'make' to build gtest.
If you use Windows and have Visual Studio installed, a `gtest.sln` file and
several `.vcproj` files will be created. You can then build them using Visual
Studio.
On Mac OS X with Xcode installed, a `.xcodeproj` file will be generated.
#### Incorporating Into An Existing CMake Project
If you want to use gtest in a project which already uses CMake, then a more
robust and flexible approach is to build gtest as part of that project directly.
This is done by making the GoogleTest source code available to the main build
and adding it using CMake's `add_subdirectory()` command. This has the
significant advantage that the same compiler and linker settings are used
between gtest and the rest of your project, so issues associated with using
incompatible libraries (eg debug/release), etc. are avoided. This is
particularly useful on Windows. Making GoogleTest's source code available to the
main build can be done a few different ways:
* Download the GoogleTest source code manually and place it at a known
location. This is the least flexible approach and can make it more difficult
to use with continuous integration systems, etc.
* Embed the GoogleTest source code as a direct copy in the main project's
source tree. This is often the simplest approach, but is also the hardest to
keep up to date. Some organizations may not permit this method.
* Add GoogleTest as a git submodule or equivalent. This may not always be
possible or appropriate. Git submodules, for example, have their own set of
advantages and drawbacks.
* Use CMake to download GoogleTest as part of the build's configure step. This
is just a little more complex, but doesn't have the limitations of the other
methods.
The last of the above methods is implemented with a small piece of CMake code in
a separate file (e.g. `CMakeLists.txt.in`) which is copied to the build area and
then invoked as a sub-build _during the CMake stage_. That directory is then
pulled into the main build with `add_subdirectory()`. For example:
New file `CMakeLists.txt.in`:
```cmake
cmake_minimum_required(VERSION 2.8.2)
project(googletest-download NONE)
include(ExternalProject)
ExternalProject_Add(googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG master
SOURCE_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-src"
BINARY_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-build"
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
```
Existing build's `CMakeLists.txt`:
```cmake
# Download and unpack googletest at configure time
configure_file(CMakeLists.txt.in googletest-download/CMakeLists.txt)
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download )
if(result)
message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download )
if(result)
message(FATAL_ERROR "Build step for googletest failed: ${result}")
endif()
# Prevent overriding the parent project's compiler/linker
# settings on Windows
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
# Add googletest directly to our build. This defines
# the gtest and gtest_main targets.
add_subdirectory(${CMAKE_CURRENT_BINARY_DIR}/googletest-src
${CMAKE_CURRENT_BINARY_DIR}/googletest-build
EXCLUDE_FROM_ALL)
# The gtest/gtest_main targets carry header search path
# dependencies automatically when using CMake 2.8.11 or
# later. Otherwise we have to add them here ourselves.
if (CMAKE_VERSION VERSION_LESS 2.8.11)
include_directories("${gtest_SOURCE_DIR}/include")
endif()
# Now simply link against gtest or gtest_main as needed. Eg
add_executable(example example.cpp)
target_link_libraries(example gtest_main)
add_test(NAME example_test COMMAND example)
```
Note that this approach requires CMake 2.8.2 or later due to its use of the
`ExternalProject_Add()` command. The above technique is discussed in more detail
in [this separate article](http://crascit.com/2015/07/25/cmake-gtest/) which
also contains a link to a fully generalized implementation of the technique.
##### Visual Studio Dynamic vs Static Runtimes
By default, new Visual Studio projects link the C runtimes dynamically but
Google Test links them statically. This will generate an error that looks
something like the following: gtest.lib(gtest-all.obj) : error LNK2038: mismatch
detected for 'RuntimeLibrary': value 'MTd_StaticDebug' doesn't match value
'MDd_DynamicDebug' in main.obj
Google Test already has a CMake option for this: `gtest_force_shared_crt`
Enabling this option will make gtest link the runtimes dynamically too, and
match the project in which it is included.
#### C++ Standard Version
An environment that supports C++11 is required in order to successfully build
Google Test. One way to ensure this is to specify the standard in the top-level
project, for example by using the `set(CMAKE_CXX_STANDARD 11)` command. If this
is not feasible, for example in a C project using Google Test for validation,
then it can be specified by adding it to the options for cmake via the
`DCMAKE_CXX_FLAGS` option.
### Tweaking Google Test
Google Test can be used in diverse environments. The default configuration may
not work (or may not work well) out of the box in some environments. However,
you can easily tweak Google Test by defining control macros on the compiler
command line. Generally, these macros are named like `GTEST_XYZ` and you define
them to either 1 or 0 to enable or disable a certain feature.
We list the most frequently used macros below. For a complete list, see file
[include/gtest/internal/gtest-port.h](https://github.com/google/googletest/blob/master/googletest/include/gtest/internal/gtest-port.h).
### Multi-threaded Tests
Google Test is thread-safe where the pthread library is available. After
`#include "gtest/gtest.h"`, you can check the
`GTEST_IS_THREADSAFE` macro to see whether this is the case (yes if the macro is
`#defined` to 1, no if it's undefined.).
If Google Test doesn't correctly detect whether pthread is available in your
environment, you can force it with
-DGTEST_HAS_PTHREAD=1
or
-DGTEST_HAS_PTHREAD=0
When Google Test uses pthread, you may need to add flags to your compiler and/or
linker to select the pthread library, or you'll get link errors. If you use the
CMake script or the deprecated Autotools script, this is taken care of for you.
If you use your own build script, you'll need to read your compiler and linker's
manual to figure out what flags to add.
### As a Shared Library (DLL)
Google Test is compact, so most users can build and link it as a static library
for the simplicity. You can choose to use Google Test as a shared library (known
as a DLL on Windows) if you prefer.
To compile *gtest* as a shared library, add
-DGTEST_CREATE_SHARED_LIBRARY=1
to the compiler flags. You'll also need to tell the linker to produce a shared
library instead - consult your linker's manual for how to do it.
To compile your *tests* that use the gtest shared library, add
-DGTEST_LINKED_AS_SHARED_LIBRARY=1
to the compiler flags.
Note: while the above steps aren't technically necessary today when using some
compilers (e.g. GCC), they may become necessary in the future, if we decide to
improve the speed of loading the library (see
<http://gcc.gnu.org/wiki/Visibility> for details). Therefore you are recommended
to always add the above flags when using Google Test as a shared library.
Otherwise a future release of Google Test may break your build script.
### Avoiding Macro Name Clashes
In C++, macros don't obey namespaces. Therefore two libraries that both define a
macro of the same name will clash if you `#include` both definitions. In case a
Google Test macro clashes with another library, you can force Google Test to
rename its macro to avoid the conflict.
Specifically, if both Google Test and some other code define macro FOO, you can
add
-DGTEST_DONT_DEFINE_FOO=1
to the compiler flags to tell Google Test to change the macro's name from `FOO`
to `GTEST_FOO`. Currently `FOO` can be `FAIL`, `SUCCEED`, or `TEST`. For
example, with `-DGTEST_DONT_DEFINE_TEST=1`, you'll need to write
GTEST_TEST(SomeTest, DoesThis) { ... }
instead of
TEST(SomeTest, DoesThis) { ... }
in order to define a test.
@PACKAGE_INIT@
include(CMakeFindDependencyMacro)
if (@GTEST_HAS_PTHREAD@)
set(THREADS_PREFER_PTHREAD_FLAG @THREADS_PREFER_PTHREAD_FLAG@)
find_dependency(Threads)
endif()
include("${CMAKE_CURRENT_LIST_DIR}/@targets_export_name@.cmake")
check_required_components("@project_name@")
prefix=${pcfiledir}/../..
libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@
includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@
Name: gtest
Description: GoogleTest (without main() function)
Version: @PROJECT_VERSION@
URL: https://github.com/google/googletest
Libs: -L${libdir} -lgtest @CMAKE_THREAD_LIBS_INIT@
Cflags: -I${includedir} @GTEST_HAS_PTHREAD_MACRO@ @CMAKE_THREAD_LIBS_INIT@
prefix=${pcfiledir}/../..
libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@
includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@
Name: gtest_main
Description: GoogleTest (with main() function)
Version: @PROJECT_VERSION@
URL: https://github.com/google/googletest
Requires: gtest
Libs: -L${libdir} -lgtest_main @CMAKE_THREAD_LIBS_INIT@
Cflags: -I${includedir} @GTEST_HAS_PTHREAD_MACRO@ @CMAKE_THREAD_LIBS_INIT@
......@@ -12,6 +12,10 @@
# Test and Google Mock's option() definitions, and thus must be
# called *after* the options have been defined.
if (POLICY CMP0054)
cmake_policy(SET CMP0054 NEW)
endif (POLICY CMP0054)
# Tweaks CMake's default compiler/linker settings to suit Google Test's needs.
#
# This must be a macro(), as inside a function string() can only
......@@ -20,8 +24,10 @@ macro(fix_default_compiler_settings_)
if (MSVC)
# For MSVC, CMake sets certain flags to defaults we want to override.
# This replacement code is taken from sample in the CMake Wiki at
# http://www.cmake.org/Wiki/CMake_FAQ#Dynamic_Replace.
# https://gitlab.kitware.com/cmake/community/wikis/FAQ#dynamic-replace.
foreach (flag_var
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if (NOT BUILD_SHARED_LIBS AND NOT gtest_force_shared_crt)
......@@ -38,6 +44,11 @@ macro(fix_default_compiler_settings_)
# We prefer more strict warning checking for building Google Test.
# Replaces /W3 with /W4 in defaults.
string(REPLACE "/W3" "/W4" ${flag_var} "${${flag_var}}")
# Prevent D9025 warning for targets that have exception handling
# turned off (/EHs-c- flag). Where required, exceptions are explicitly
# re-enabled using the cxx_exception_flags variable.
string(REPLACE "/EHsc" "" ${flag_var} "${${flag_var}}")
endforeach()
endif()
endmacro()
......@@ -46,9 +57,15 @@ endmacro()
# Google Mock. You can tweak these definitions to suit your need. A
# variable's value is empty before it's explicitly assigned to.
macro(config_compiler_and_linker)
if (NOT gtest_disable_pthreads)
# Note: pthreads on MinGW is not supported, even if available
# instead, we use windows threading primitives
unset(GTEST_HAS_PTHREAD)
if (NOT gtest_disable_pthreads AND NOT MINGW)
# Defines CMAKE_USE_PTHREADS_INIT and CMAKE_THREAD_LIBS_INIT.
find_package(Threads)
if (CMAKE_USE_PTHREADS_INIT)
set(GTEST_HAS_PTHREAD ON)
endif()
endif()
fix_default_compiler_settings_()
......@@ -56,42 +73,25 @@ macro(config_compiler_and_linker)
# Newlines inside flags variables break CMake's NMake generator.
# TODO(vladl@google.com): Add -RTCs and -RTCu to debug builds.
set(cxx_base_flags "-GS -W4 -WX -wd4251 -wd4275 -nologo -J -Zi")
if (MSVC_VERSION LESS 1400) # 1400 is Visual Studio 2005
# Suppress spurious warnings MSVC 7.1 sometimes issues.
# Forcing value to bool.
set(cxx_base_flags "${cxx_base_flags} -wd4800")
# Copy constructor and assignment operator could not be generated.
set(cxx_base_flags "${cxx_base_flags} -wd4511 -wd4512")
# Compatibility warnings not applicable to Google Test.
# Resolved overload was found by argument-dependent lookup.
set(cxx_base_flags "${cxx_base_flags} -wd4675")
endif()
if (MSVC_VERSION LESS 1500) # 1500 is Visual Studio 2008
# Conditional expression is constant.
# When compiling with /W4, we get several instances of C4127
# (Conditional expression is constant). In our code, we disable that
# warning on a case-by-case basis. However, on Visual Studio 2005,
# the warning fires on std::list. Therefore on that compiler and earlier,
# we disable the warning project-wide.
set(cxx_base_flags "${cxx_base_flags} -wd4127")
endif()
if (NOT (MSVC_VERSION LESS 1700)) # 1700 is Visual Studio 2012.
# Suppress "unreachable code" warning on VS 2012 and later.
# http://stackoverflow.com/questions/3232669 explains the issue.
set(cxx_base_flags "${cxx_base_flags} -wd4702")
endif()
if (NOT (MSVC_VERSION GREATER 1900)) # 1900 is Visual Studio 2015
# BigObj required for tests.
set(cxx_base_flags "${cxx_base_flags} -bigobj")
endif()
set(cxx_base_flags "${cxx_base_flags} -D_UNICODE -DUNICODE -DWIN32 -D_WIN32")
set(cxx_base_flags "${cxx_base_flags} -DSTRICT -DWIN32_LEAN_AND_MEAN")
set(cxx_exception_flags "-EHsc -D_HAS_EXCEPTIONS=1")
set(cxx_no_exception_flags "-D_HAS_EXCEPTIONS=0")
set(cxx_no_exception_flags "-EHs-c- -D_HAS_EXCEPTIONS=0")
set(cxx_no_rtti_flags "-GR-")
# Suppress "unreachable code" warning
# http://stackoverflow.com/questions/3232669 explains the issue.
set(cxx_base_flags "${cxx_base_flags} -wd4702")
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
set(cxx_base_flags "-Wall -Wshadow -Werror -Wconversion")
set(cxx_exception_flags "-fexceptions")
set(cxx_no_exception_flags "-fno-exceptions")
set(cxx_strict_flags "-W -Wpointer-arith -Wreturn-type -Wcast-qual -Wwrite-strings -Wswitch -Wunused-parameter -Wcast-align -Wchar-subscripts -Winline -Wredundant-decls")
set(cxx_no_rtti_flags "-fno-rtti")
elseif (CMAKE_COMPILER_IS_GNUCXX)
set(cxx_base_flags "-Wall -Wshadow")
set(cxx_base_flags "-Wall -Wshadow -Werror")
if(NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0.0)
set(cxx_base_flags "${cxx_base_flags} -Wno-error=dangling-else")
endif()
set(cxx_exception_flags "-fexceptions")
set(cxx_no_exception_flags "-fno-exceptions")
# Until version 4.3.2, GCC doesn't define a macro to indicate
......@@ -123,19 +123,20 @@ macro(config_compiler_and_linker)
set(cxx_no_rtti_flags "")
endif()
if (CMAKE_USE_PTHREADS_INIT) # The pthreads library is available and allowed.
set(cxx_base_flags "${cxx_base_flags} -DGTEST_HAS_PTHREAD=1")
# The pthreads library is available and allowed?
if (DEFINED GTEST_HAS_PTHREAD)
set(GTEST_HAS_PTHREAD_MACRO "-DGTEST_HAS_PTHREAD=1")
else()
set(cxx_base_flags "${cxx_base_flags} -DGTEST_HAS_PTHREAD=0")
set(GTEST_HAS_PTHREAD_MACRO "-DGTEST_HAS_PTHREAD=0")
endif()
set(cxx_base_flags "${cxx_base_flags} ${GTEST_HAS_PTHREAD_MACRO}")
# For building gtest's own tests and samples.
set(cxx_exception "${CMAKE_CXX_FLAGS} ${cxx_base_flags} ${cxx_exception_flags}")
set(cxx_exception "${cxx_base_flags} ${cxx_exception_flags}")
set(cxx_no_exception
"${CMAKE_CXX_FLAGS} ${cxx_base_flags} ${cxx_no_exception_flags}")
set(cxx_default "${cxx_exception}")
set(cxx_no_rtti "${cxx_default} ${cxx_no_rtti_flags}")
set(cxx_use_own_tuple "${cxx_default} -DGTEST_USE_OWN_TR1_TUPLE=1")
# For building the gtest libraries.
set(cxx_strict "${cxx_default} ${cxx_strict_flags}")
......@@ -150,13 +151,42 @@ function(cxx_library_with_type name type cxx_flags)
set_target_properties(${name}
PROPERTIES
COMPILE_FLAGS "${cxx_flags}")
# Generate debug library name with a postfix.
set_target_properties(${name}
PROPERTIES
DEBUG_POSTFIX "d")
# Set the output directory for build artifacts
set_target_properties(${name}
PROPERTIES
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
PDB_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin")
# make PDBs match library name
get_target_property(pdb_debug_postfix ${name} DEBUG_POSTFIX)
set_target_properties(${name}
PROPERTIES
PDB_NAME "${name}"
PDB_NAME_DEBUG "${name}${pdb_debug_postfix}"
COMPILE_PDB_NAME "${name}"
COMPILE_PDB_NAME_DEBUG "${name}${pdb_debug_postfix}")
if (BUILD_SHARED_LIBS OR type STREQUAL "SHARED")
set_target_properties(${name}
PROPERTIES
COMPILE_DEFINITIONS "GTEST_CREATE_SHARED_LIBRARY=1")
if (NOT "${CMAKE_VERSION}" VERSION_LESS "2.8.11")
target_compile_definitions(${name} INTERFACE
$<INSTALL_INTERFACE:GTEST_LINKED_AS_SHARED_LIBRARY=1>)
endif()
endif()
if (CMAKE_USE_PTHREADS_INIT)
target_link_libraries(${name} ${CMAKE_THREAD_LIBS_INIT})
if (DEFINED GTEST_HAS_PTHREAD)
if ("${CMAKE_VERSION}" VERSION_LESS "3.1.0")
set(threads_spec ${CMAKE_THREAD_LIBS_INIT})
else()
set(threads_spec Threads::Threads)
endif()
target_link_libraries(${name} PUBLIC ${threads_spec})
endif()
endfunction()
......@@ -178,6 +208,10 @@ endfunction()
# is built from the given source files with the given compiler flags.
function(cxx_executable_with_flags name cxx_flags libs)
add_executable(${name} ${ARGN})
if (MSVC)
# BigObj required for tests.
set(cxx_flags "${cxx_flags} -bigobj")
endif()
if (cxx_flags)
set_target_properties(${name}
PROPERTIES
......@@ -214,7 +248,13 @@ find_package(PythonInterp)
# from the given source files with the given compiler flags.
function(cxx_test_with_flags name cxx_flags libs)
cxx_executable_with_flags(${name} "${cxx_flags}" "${libs}" ${ARGN})
add_test(${name} ${name})
if (WIN32 OR MINGW)
add_test(NAME ${name}
COMMAND "powershell" "-Command" "${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG>/RunTest.ps1" "$<TARGET_FILE:${name}>")
else()
add_test(NAME ${name}
COMMAND "$<TARGET_FILE:${name}>")
endif()
endfunction()
# cxx_test(name libs srcs...)
......@@ -232,23 +272,87 @@ endfunction()
# creates a Python test with the given name whose main module is in
# test/name.py. It does nothing if Python is not installed.
function(py_test name)
# We are not supporting Python tests on Linux yet as they consider
# all Linux environments to be google3 and try to use google3 features.
if (PYTHONINTERP_FOUND)
# ${CMAKE_BINARY_DIR} is known at configuration time, so we can
# directly bind it from cmake. ${CTEST_CONFIGURATION_TYPE} is known
# only at ctest runtime (by calling ctest -c <Configuration>), so
# we have to escape $ to delay variable substitution here.
if (${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION} GREATER 3.1)
add_test(
NAME ${name}
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/$<CONFIGURATION>)
else (${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION} GREATER 3.1)
add_test(
${name}
${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/\${CTEST_CONFIGURATION_TYPE})
endif (${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION} GREATER 3.1)
if ("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" VERSION_GREATER 3.1)
if (CMAKE_CONFIGURATION_TYPES)
# Multi-configuration build generators as for Visual Studio save
# output in a subdirectory of CMAKE_CURRENT_BINARY_DIR (Debug,
# Release etc.), so we have to provide it here.
if (WIN32 OR MINGW)
add_test(NAME ${name}
COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG>/RunTest.ps1
${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG> ${ARGN})
else()
add_test(NAME ${name}
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG> ${ARGN})
endif()
else (CMAKE_CONFIGURATION_TYPES)
# Single-configuration build generators like Makefile generators
# don't have subdirs below CMAKE_CURRENT_BINARY_DIR.
if (WIN32 OR MINGW)
add_test(NAME ${name}
COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1
${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR} ${ARGN})
else()
add_test(NAME ${name}
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR} ${ARGN})
endif()
endif (CMAKE_CONFIGURATION_TYPES)
else()
# ${CMAKE_CURRENT_BINARY_DIR} is known at configuration time, so we can
# directly bind it from cmake. ${CTEST_CONFIGURATION_TYPE} is known
# only at ctest runtime (by calling ctest -c <Configuration>), so
# we have to escape $ to delay variable substitution here.
if (WIN32 OR MINGW)
add_test(NAME ${name}
COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1
${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/\${CTEST_CONFIGURATION_TYPE} ${ARGN})
else()
add_test(NAME ${name}
COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py
--build_dir=${CMAKE_CURRENT_BINARY_DIR}/\${CTEST_CONFIGURATION_TYPE} ${ARGN})
endif()
endif()
endif(PYTHONINTERP_FOUND)
endfunction()
# install_project(targets...)
#
# Installs the specified targets and configures the associated pkgconfig files.
function(install_project)
if(INSTALL_GTEST)
install(DIRECTORY "${PROJECT_SOURCE_DIR}/include/"
DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}")
# Install the project targets.
install(TARGETS ${ARGN}
EXPORT ${targets_export_name}
RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}"
ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}"
LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}")
if(CMAKE_CXX_COMPILER_ID MATCHES "MSVC")
# Install PDBs
foreach(t ${ARGN})
get_target_property(t_pdb_name ${t} COMPILE_PDB_NAME)
get_target_property(t_pdb_name_debug ${t} COMPILE_PDB_NAME_DEBUG)
get_target_property(t_pdb_output_directory ${t} PDB_OUTPUT_DIRECTORY)
install(FILES
"${t_pdb_output_directory}/\${CMAKE_INSTALL_CONFIG_NAME}/$<$<CONFIG:Debug>:${t_pdb_name_debug}>$<$<NOT:$<CONFIG:Debug>>:${t_pdb_name}>.pdb"
DESTINATION ${CMAKE_INSTALL_LIBDIR}
OPTIONAL)
endforeach()
endif()
# Configure and install pkgconfig files.
foreach(t ${ARGN})
set(configured_pc "${generated_dir}/${t}.pc")
configure_file("${PROJECT_SOURCE_DIR}/cmake/${t}.pc.in"
"${configured_pc}" @ONLY)
install(FILES "${configured_pc}"
DESTINATION "${CMAKE_INSTALL_LIBDIR}/pkgconfig")
endforeach()
endif()
endfunction()
# libgtest.la - a libtool library file
# Generated by libtool (GNU libtool) 2.4.6
# Please DO NOT delete this file!
# It is necessary for linking the library.
# Names of this library.
library_names='libgtest.so'
# Is this an already installed library?
installed=yes
# Should we warn about portability when linking against -modules?
shouldnotlink=no
# Files to dlopen/dlpreopen
dlopen=''
dlpreopen=''
# Directory that this library needs to be installed in:
libdir='@CMAKE_INSTALL_FULL_LIBDIR@'
# Advanced googletest Topics
<!-- GOOGLETEST_CM0016 DO NOT DELETE -->
## Introduction
Now that you have read the [googletest Primer](primer.md) and learned how to
write tests using googletest, it's time to learn some new tricks. This document
will show you more assertions as well as how to construct complex failure
messages, propagate fatal failures, reuse and speed up your test fixtures, and
use various flags with your tests.
## More Assertions
This section covers some less frequently used, but still significant,
assertions.
### Explicit Success and Failure
These three assertions do not actually test a value or expression. Instead, they
generate a success or failure directly. Like the macros that actually perform a
test, you may stream a custom failure message into them.
```c++
SUCCEED();
```
Generates a success. This does **NOT** make the overall test succeed. A test is
considered successful only if none of its assertions fail during its execution.
NOTE: `SUCCEED()` is purely documentary and currently doesn't generate any
user-visible output. However, we may add `SUCCEED()` messages to googletest's
output in the future.
```c++
FAIL();
ADD_FAILURE();
ADD_FAILURE_AT("file_path", line_number);
```
`FAIL()` generates a fatal failure, while `ADD_FAILURE()` and `ADD_FAILURE_AT()`
generate a nonfatal failure. These are useful when control flow, rather than a
Boolean expression, determines the test's success or failure. For example, you
might want to write something like:
```c++
switch(expression) {
case 1:
... some checks ...
case 2:
... some other checks ...
default:
FAIL() << "We shouldn't get here.";
}
```
NOTE: you can only use `FAIL()` in functions that return `void`. See the
[Assertion Placement section](#assertion-placement) for more information.
### Exception Assertions
These are for verifying that a piece of code throws (or does not throw) an
exception of the given type:
Fatal assertion | Nonfatal assertion | Verifies
------------------------------------------ | ------------------------------------------ | --------
`ASSERT_THROW(statement, exception_type);` | `EXPECT_THROW(statement, exception_type);` | `statement` throws an exception of the given type
`ASSERT_ANY_THROW(statement);` | `EXPECT_ANY_THROW(statement);` | `statement` throws an exception of any type
`ASSERT_NO_THROW(statement);` | `EXPECT_NO_THROW(statement);` | `statement` doesn't throw any exception
Examples:
```c++
ASSERT_THROW(Foo(5), bar_exception);
EXPECT_NO_THROW({
int n = 5;
Bar(&n);
});
```
**Availability**: requires exceptions to be enabled in the build environment
### Predicate Assertions for Better Error Messages
Even though googletest has a rich set of assertions, they can never be complete,
as it's impossible (nor a good idea) to anticipate all scenarios a user might
run into. Therefore, sometimes a user has to use `EXPECT_TRUE()` to check a
complex expression, for lack of a better macro. This has the problem of not
showing you the values of the parts of the expression, making it hard to
understand what went wrong. As a workaround, some users choose to construct the
failure message by themselves, streaming it into `EXPECT_TRUE()`. However, this
is awkward especially when the expression has side-effects or is expensive to
evaluate.
googletest gives you three different options to solve this problem:
#### Using an Existing Boolean Function
If you already have a function or functor that returns `bool` (or a type that
can be implicitly converted to `bool`), you can use it in a *predicate
assertion* to get the function arguments printed for free:
<!-- mdformat off(github rendering does not support multiline tables) -->
| Fatal assertion | Nonfatal assertion | Verifies |
| --------------------------------- | --------------------------------- | --------------------------- |
| `ASSERT_PRED1(pred1, val1)` | `EXPECT_PRED1(pred1, val1)` | `pred1(val1)` is true |
| `ASSERT_PRED2(pred2, val1, val2)` | `EXPECT_PRED2(pred2, val1, val2)` | `pred1(val1, val2)` is true |
| `...` | `...` | `...` |
<!-- mdformat on-->
In the above, `predn` is an `n`-ary predicate function or functor, where `val1`,
`val2`, ..., and `valn` are its arguments. The assertion succeeds if the
predicate returns `true` when applied to the given arguments, and fails
otherwise. When the assertion fails, it prints the value of each argument. In
either case, the arguments are evaluated exactly once.
Here's an example. Given
```c++
// Returns true if m and n have no common divisors except 1.
bool MutuallyPrime(int m, int n) { ... }
const int a = 3;
const int b = 4;
const int c = 10;
```
the assertion
```c++
EXPECT_PRED2(MutuallyPrime, a, b);
```
will succeed, while the assertion
```c++
EXPECT_PRED2(MutuallyPrime, b, c);
```
will fail with the message
```none
MutuallyPrime(b, c) is false, where
b is 4
c is 10
```
> NOTE:
>
> 1. If you see a compiler error "no matching function to call" when using
> `ASSERT_PRED*` or `EXPECT_PRED*`, please see
> [this](faq.md#the-compiler-complains-no-matching-function-to-call-when-i-use-assert-pred-how-do-i-fix-it)
> for how to resolve it.
#### Using a Function That Returns an AssertionResult
While `EXPECT_PRED*()` and friends are handy for a quick job, the syntax is not
satisfactory: you have to use different macros for different arities, and it
feels more like Lisp than C++. The `::testing::AssertionResult` class solves
this problem.
An `AssertionResult` object represents the result of an assertion (whether it's
a success or a failure, and an associated message). You can create an
`AssertionResult` using one of these factory functions:
```c++
namespace testing {
// Returns an AssertionResult object to indicate that an assertion has
// succeeded.
AssertionResult AssertionSuccess();
// Returns an AssertionResult object to indicate that an assertion has
// failed.
AssertionResult AssertionFailure();
}
```
You can then use the `<<` operator to stream messages to the `AssertionResult`
object.
To provide more readable messages in Boolean assertions (e.g. `EXPECT_TRUE()`),
write a predicate function that returns `AssertionResult` instead of `bool`. For
example, if you define `IsEven()` as:
```c++
::testing::AssertionResult IsEven(int n) {
if ((n % 2) == 0)
return ::testing::AssertionSuccess();
else
return ::testing::AssertionFailure() << n << " is odd";
}
```
instead of:
```c++
bool IsEven(int n) {
return (n % 2) == 0;
}
```
the failed assertion `EXPECT_TRUE(IsEven(Fib(4)))` will print:
```none
Value of: IsEven(Fib(4))
Actual: false (3 is odd)
Expected: true
```
instead of a more opaque
```none
Value of: IsEven(Fib(4))
Actual: false
Expected: true
```
If you want informative messages in `EXPECT_FALSE` and `ASSERT_FALSE` as well
(one third of Boolean assertions in the Google code base are negative ones), and
are fine with making the predicate slower in the success case, you can supply a
success message:
```c++
::testing::AssertionResult IsEven(int n) {
if ((n % 2) == 0)
return ::testing::AssertionSuccess() << n << " is even";
else
return ::testing::AssertionFailure() << n << " is odd";
}
```
Then the statement `EXPECT_FALSE(IsEven(Fib(6)))` will print
```none
Value of: IsEven(Fib(6))
Actual: true (8 is even)
Expected: false
```
#### Using a Predicate-Formatter
If you find the default message generated by `(ASSERT|EXPECT)_PRED*` and
`(ASSERT|EXPECT)_(TRUE|FALSE)` unsatisfactory, or some arguments to your
predicate do not support streaming to `ostream`, you can instead use the
following *predicate-formatter assertions* to *fully* customize how the message
is formatted:
Fatal assertion | Nonfatal assertion | Verifies
------------------------------------------------ | ------------------------------------------------ | --------
`ASSERT_PRED_FORMAT1(pred_format1, val1);` | `EXPECT_PRED_FORMAT1(pred_format1, val1);` | `pred_format1(val1)` is successful
`ASSERT_PRED_FORMAT2(pred_format2, val1, val2);` | `EXPECT_PRED_FORMAT2(pred_format2, val1, val2);` | `pred_format2(val1, val2)` is successful
`...` | `...` | ...
The difference between this and the previous group of macros is that instead of
a predicate, `(ASSERT|EXPECT)_PRED_FORMAT*` take a *predicate-formatter*
(`pred_formatn`), which is a function or functor with the signature:
```c++
::testing::AssertionResult PredicateFormattern(const char* expr1,
const char* expr2,
...
const char* exprn,
T1 val1,
T2 val2,
...
Tn valn);
```
where `val1`, `val2`, ..., and `valn` are the values of the predicate arguments,
and `expr1`, `expr2`, ..., and `exprn` are the corresponding expressions as they
appear in the source code. The types `T1`, `T2`, ..., and `Tn` can be either
value types or reference types. For example, if an argument has type `Foo`, you
can declare it as either `Foo` or `const Foo&`, whichever is appropriate.
As an example, let's improve the failure message in `MutuallyPrime()`, which was
used with `EXPECT_PRED2()`:
```c++
// Returns the smallest prime common divisor of m and n,
// or 1 when m and n are mutually prime.
int SmallestPrimeCommonDivisor(int m, int n) { ... }
// A predicate-formatter for asserting that two integers are mutually prime.
::testing::AssertionResult AssertMutuallyPrime(const char* m_expr,
const char* n_expr,
int m,
int n) {
if (MutuallyPrime(m, n)) return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << m_expr << " and " << n_expr
<< " (" << m << " and " << n << ") are not mutually prime, "
<< "as they have a common divisor " << SmallestPrimeCommonDivisor(m, n);
}
```
With this predicate-formatter, we can use
```c++
EXPECT_PRED_FORMAT2(AssertMutuallyPrime, b, c);
```
to generate the message
```none
b and c (4 and 10) are not mutually prime, as they have a common divisor 2.
```
As you may have realized, many of the built-in assertions we introduced earlier
are special cases of `(EXPECT|ASSERT)_PRED_FORMAT*`. In fact, most of them are
indeed defined using `(EXPECT|ASSERT)_PRED_FORMAT*`.
### Floating-Point Comparison
Comparing floating-point numbers is tricky. Due to round-off errors, it is very
unlikely that two floating-points will match exactly. Therefore, `ASSERT_EQ` 's
naive comparison usually doesn't work. And since floating-points can have a wide
value range, no single fixed error bound works. It's better to compare by a
fixed relative error bound, except for values close to 0 due to the loss of
precision there.
In general, for floating-point comparison to make sense, the user needs to
carefully choose the error bound. If they don't want or care to, comparing in
terms of Units in the Last Place (ULPs) is a good default, and googletest
provides assertions to do this. Full details about ULPs are quite long; if you
want to learn more, see
[here](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#### Floating-Point Macros
<!-- mdformat off(github rendering does not support multiline tables) -->
| Fatal assertion | Nonfatal assertion | Verifies |
| ------------------------------- | ------------------------------- | ---------------------------------------- |
| `ASSERT_FLOAT_EQ(val1, val2);` | `EXPECT_FLOAT_EQ(val1, val2);` | the two `float` values are almost equal |
| `ASSERT_DOUBLE_EQ(val1, val2);` | `EXPECT_DOUBLE_EQ(val1, val2);` | the two `double` values are almost equal |
<!-- mdformat on-->
By "almost equal" we mean the values are within 4 ULP's from each other.
The following assertions allow you to choose the acceptable error bound:
<!-- mdformat off(github rendering does not support multiline tables) -->
| Fatal assertion | Nonfatal assertion | Verifies |
| ------------------------------------- | ------------------------------------- | -------------------------------------------------------------------------------- |
| `ASSERT_NEAR(val1, val2, abs_error);` | `EXPECT_NEAR(val1, val2, abs_error);` | the difference between `val1` and `val2` doesn't exceed the given absolute error |
<!-- mdformat on-->
#### Floating-Point Predicate-Format Functions
Some floating-point operations are useful, but not that often used. In order to
avoid an explosion of new macros, we provide them as predicate-format functions
that can be used in predicate assertion macros (e.g. `EXPECT_PRED_FORMAT2`,
etc).
```c++
EXPECT_PRED_FORMAT2(::testing::FloatLE, val1, val2);
EXPECT_PRED_FORMAT2(::testing::DoubleLE, val1, val2);
```
Verifies that `val1` is less than, or almost equal to, `val2`. You can replace
`EXPECT_PRED_FORMAT2` in the above table with `ASSERT_PRED_FORMAT2`.
### Asserting Using gMock Matchers
[gMock](../../googlemock) comes with a library of matchers for validating
arguments passed to mock objects. A gMock *matcher* is basically a predicate
that knows how to describe itself. It can be used in these assertion macros:
<!-- mdformat off(github rendering does not support multiline tables) -->
| Fatal assertion | Nonfatal assertion | Verifies |
| ------------------------------ | ------------------------------ | --------------------- |
| `ASSERT_THAT(value, matcher);` | `EXPECT_THAT(value, matcher);` | value matches matcher |
<!-- mdformat on-->
For example, `StartsWith(prefix)` is a matcher that matches a string starting
with `prefix`, and you can write:
```c++
using ::testing::StartsWith;
...
// Verifies that Foo() returns a string starting with "Hello".
EXPECT_THAT(Foo(), StartsWith("Hello"));
```
Read this
[recipe](../../googlemock/docs/cook_book.md#using-matchers-in-googletest-assertions)
in the gMock Cookbook for more details.
gMock has a rich set of matchers. You can do many things googletest cannot do
alone with them. For a list of matchers gMock provides, read
[this](../../googlemock/docs/cook_book.md##using-matchers). It's easy to write
your [own matchers](../../googlemock/docs/cook_book.md#NewMatchers) too.
gMock is bundled with googletest, so you don't need to add any build dependency
in order to take advantage of this. Just include `"testing/base/public/gmock.h"`
and you're ready to go.
### More String Assertions
(Please read the [previous](#asserting-using-gmock-matchers) section first if
you haven't.)
You can use the gMock
[string matchers](../../googlemock/docs/cheat_sheet.md#string-matchers) with
`EXPECT_THAT()` or `ASSERT_THAT()` to do more string comparison tricks
(sub-string, prefix, suffix, regular expression, and etc). For example,
```c++
using ::testing::HasSubstr;
using ::testing::MatchesRegex;
...
ASSERT_THAT(foo_string, HasSubstr("needle"));
EXPECT_THAT(bar_string, MatchesRegex("\\w*\\d+"));
```
If the string contains a well-formed HTML or XML document, you can check whether
its DOM tree matches an
[XPath expression](http://www.w3.org/TR/xpath/#contents):
```c++
// Currently still in //template/prototemplate/testing:xpath_matcher
#include "template/prototemplate/testing/xpath_matcher.h"
using prototemplate::testing::MatchesXPath;
EXPECT_THAT(html_string, MatchesXPath("//a[text()='click here']"));
```
### Windows HRESULT assertions
These assertions test for `HRESULT` success or failure.
Fatal assertion | Nonfatal assertion | Verifies
-------------------------------------- | -------------------------------------- | --------
`ASSERT_HRESULT_SUCCEEDED(expression)` | `EXPECT_HRESULT_SUCCEEDED(expression)` | `expression` is a success `HRESULT`
`ASSERT_HRESULT_FAILED(expression)` | `EXPECT_HRESULT_FAILED(expression)` | `expression` is a failure `HRESULT`
The generated output contains the human-readable error message associated with
the `HRESULT` code returned by `expression`.
You might use them like this:
```c++
CComPtr<IShellDispatch2> shell;
ASSERT_HRESULT_SUCCEEDED(shell.CoCreateInstance(L"Shell.Application"));
CComVariant empty;
ASSERT_HRESULT_SUCCEEDED(shell->ShellExecute(CComBSTR(url), empty, empty, empty, empty));
```
### Type Assertions
You can call the function
```c++
::testing::StaticAssertTypeEq<T1, T2>();
```
to assert that types `T1` and `T2` are the same. The function does nothing if
the assertion is satisfied. If the types are different, the function call will
fail to compile, the compiler error message will say that
`type1 and type2 are not the same type` and most likely (depending on the compiler)
show you the actual values of `T1` and `T2`. This is mainly useful inside
template code.
**Caveat**: When used inside a member function of a class template or a function
template, `StaticAssertTypeEq<T1, T2>()` is effective only if the function is
instantiated. For example, given:
```c++
template <typename T> class Foo {
public:
void Bar() { ::testing::StaticAssertTypeEq<int, T>(); }
};
```
the code:
```c++
void Test1() { Foo<bool> foo; }
```
will not generate a compiler error, as `Foo<bool>::Bar()` is never actually
instantiated. Instead, you need:
```c++
void Test2() { Foo<bool> foo; foo.Bar(); }
```
to cause a compiler error.
### Assertion Placement
You can use assertions in any C++ function. In particular, it doesn't have to be
a method of the test fixture class. The one constraint is that assertions that
generate a fatal failure (`FAIL*` and `ASSERT_*`) can only be used in
void-returning functions. This is a consequence of Google's not using
exceptions. By placing it in a non-void function you'll get a confusing compile
error like `"error: void value not ignored as it ought to be"` or `"cannot
initialize return object of type 'bool' with an rvalue of type 'void'"` or
`"error: no viable conversion from 'void' to 'string'"`.
If you need to use fatal assertions in a function that returns non-void, one
option is to make the function return the value in an out parameter instead. For
example, you can rewrite `T2 Foo(T1 x)` to `void Foo(T1 x, T2* result)`. You
need to make sure that `*result` contains some sensible value even when the
function returns prematurely. As the function now returns `void`, you can use
any assertion inside of it.
If changing the function's type is not an option, you should just use assertions
that generate non-fatal failures, such as `ADD_FAILURE*` and `EXPECT_*`.
NOTE: Constructors and destructors are not considered void-returning functions,
according to the C++ language specification, and so you may not use fatal
assertions in them; you'll get a compilation error if you try. Instead, either
call `abort` and crash the entire test executable, or put the fatal assertion in
a `SetUp`/`TearDown` function; see
[constructor/destructor vs. `SetUp`/`TearDown`](faq.md#CtorVsSetUp)
WARNING: A fatal assertion in a helper function (private void-returning method)
called from a constructor or destructor does not does not terminate the current
test, as your intuition might suggest: it merely returns from the constructor or
destructor early, possibly leaving your object in a partially-constructed or
partially-destructed state! You almost certainly want to `abort` or use
`SetUp`/`TearDown` instead.
## Teaching googletest How to Print Your Values
When a test assertion such as `EXPECT_EQ` fails, googletest prints the argument
values to help you debug. It does this using a user-extensible value printer.
This printer knows how to print built-in C++ types, native arrays, STL
containers, and any type that supports the `<<` operator. For other types, it
prints the raw bytes in the value and hopes that you the user can figure it out.
As mentioned earlier, the printer is *extensible*. That means you can teach it
to do a better job at printing your particular type than to dump the bytes. To
do that, define `<<` for your type:
```c++
#include <ostream>
namespace foo {
class Bar { // We want googletest to be able to print instances of this.
...
// Create a free inline friend function.
friend std::ostream& operator<<(std::ostream& os, const Bar& bar) {
return os << bar.DebugString(); // whatever needed to print bar to os
}
};
// If you can't declare the function in the class it's important that the
// << operator is defined in the SAME namespace that defines Bar. C++'s look-up
// rules rely on that.
std::ostream& operator<<(std::ostream& os, const Bar& bar) {
return os << bar.DebugString(); // whatever needed to print bar to os
}
} // namespace foo
```
Sometimes, this might not be an option: your team may consider it bad style to
have a `<<` operator for `Bar`, or `Bar` may already have a `<<` operator that
doesn't do what you want (and you cannot change it). If so, you can instead
define a `PrintTo()` function like this:
```c++
#include <ostream>
namespace foo {
class Bar {
...
friend void PrintTo(const Bar& bar, std::ostream* os) {
*os << bar.DebugString(); // whatever needed to print bar to os
}
};
// If you can't declare the function in the class it's important that PrintTo()
// is defined in the SAME namespace that defines Bar. C++'s look-up rules rely
// on that.
void PrintTo(const Bar& bar, std::ostream* os) {
*os << bar.DebugString(); // whatever needed to print bar to os
}
} // namespace foo
```
If you have defined both `<<` and `PrintTo()`, the latter will be used when
googletest is concerned. This allows you to customize how the value appears in
googletest's output without affecting code that relies on the behavior of its
`<<` operator.
If you want to print a value `x` using googletest's value printer yourself, just
call `::testing::PrintToString(x)`, which returns an `std::string`:
```c++
vector<pair<Bar, int> > bar_ints = GetBarIntVector();
EXPECT_TRUE(IsCorrectBarIntVector(bar_ints))
<< "bar_ints = " << ::testing::PrintToString(bar_ints);
```
## Death Tests
In many applications, there are assertions that can cause application failure if
a condition is not met. These sanity checks, which ensure that the program is in
a known good state, are there to fail at the earliest possible time after some
program state is corrupted. If the assertion checks the wrong condition, then
the program may proceed in an erroneous state, which could lead to memory
corruption, security holes, or worse. Hence it is vitally important to test that
such assertion statements work as expected.
Since these precondition checks cause the processes to die, we call such tests
_death tests_. More generally, any test that checks that a program terminates
(except by throwing an exception) in an expected fashion is also a death test.
Note that if a piece of code throws an exception, we don't consider it "death"
for the purpose of death tests, as the caller of the code could catch the
exception and avoid the crash. If you want to verify exceptions thrown by your
code, see [Exception Assertions](#ExceptionAssertions).
If you want to test `EXPECT_*()/ASSERT_*()` failures in your test code, see
Catching Failures
### How to Write a Death Test
googletest has the following macros to support death tests:
Fatal assertion | Nonfatal assertion | Verifies
------------------------------------------------ | ------------------------------------------------ | --------
`ASSERT_DEATH(statement, matcher);` | `EXPECT_DEATH(statement, matcher);` | `statement` crashes with the given error
`ASSERT_DEATH_IF_SUPPORTED(statement, matcher);` | `EXPECT_DEATH_IF_SUPPORTED(statement, matcher);` | if death tests are supported, verifies that `statement` crashes with the given error; otherwise verifies nothing
`ASSERT_EXIT(statement, predicate, matcher);` | `EXPECT_EXIT(statement, predicate, matcher);` | `statement` exits with the given error, and its exit code matches `predicate`
where `statement` is a statement that is expected to cause the process to die,
`predicate` is a function or function object that evaluates an integer exit
status, and `matcher` is either a GMock matcher matching a `const std::string&`
or a (Perl) regular expression - either of which is matched against the stderr
output of `statement`. For legacy reasons, a bare string (i.e. with no matcher)
is interpreted as `ContainsRegex(str)`, **not** `Eq(str)`. Note that `statement`
can be *any valid statement* (including *compound statement*) and doesn't have
to be an expression.
As usual, the `ASSERT` variants abort the current test function, while the
`EXPECT` variants do not.
> NOTE: We use the word "crash" here to mean that the process terminates with a
> *non-zero* exit status code. There are two possibilities: either the process
> has called `exit()` or `_exit()` with a non-zero value, or it may be killed by
> a signal.
>
> This means that if `*statement*` terminates the process with a 0 exit code, it
> is *not* considered a crash by `EXPECT_DEATH`. Use `EXPECT_EXIT` instead if
> this is the case, or if you want to restrict the exit code more precisely.
A predicate here must accept an `int` and return a `bool`. The death test
succeeds only if the predicate returns `true`. googletest defines a few
predicates that handle the most common cases:
```c++
::testing::ExitedWithCode(exit_code)
```
This expression is `true` if the program exited normally with the given exit
code.
```c++
::testing::KilledBySignal(signal_number) // Not available on Windows.
```
This expression is `true` if the program was killed by the given signal.
The `*_DEATH` macros are convenient wrappers for `*_EXIT` that use a predicate
that verifies the process' exit code is non-zero.
Note that a death test only cares about three things:
1. does `statement` abort or exit the process?
2. (in the case of `ASSERT_EXIT` and `EXPECT_EXIT`) does the exit status
satisfy `predicate`? Or (in the case of `ASSERT_DEATH` and `EXPECT_DEATH`)
is the exit status non-zero? And
3. does the stderr output match `regex`?
In particular, if `statement` generates an `ASSERT_*` or `EXPECT_*` failure, it
will **not** cause the death test to fail, as googletest assertions don't abort
the process.
To write a death test, simply use one of the above macros inside your test
function. For example,
```c++
TEST(MyDeathTest, Foo) {
// This death test uses a compound statement.
ASSERT_DEATH({
int n = 5;
Foo(&n);
}, "Error on line .* of Foo()");
}
TEST(MyDeathTest, NormalExit) {
EXPECT_EXIT(NormalExit(), ::testing::ExitedWithCode(0), "Success");
}
TEST(MyDeathTest, KillMyself) {
EXPECT_EXIT(KillMyself(), ::testing::KilledBySignal(SIGKILL),
"Sending myself unblockable signal");
}
```
verifies that:
* calling `Foo(5)` causes the process to die with the given error message,
* calling `NormalExit()` causes the process to print `"Success"` to stderr and
exit with exit code 0, and
* calling `KillMyself()` kills the process with signal `SIGKILL`.
The test function body may contain other assertions and statements as well, if
necessary.
### Death Test Naming
IMPORTANT: We strongly recommend you to follow the convention of naming your
**test suite** (not test) `*DeathTest` when it contains a death test, as
demonstrated in the above example. The
[Death Tests And Threads](#death-tests-and-threads) section below explains why.
If a test fixture class is shared by normal tests and death tests, you can use
`using` or `typedef` to introduce an alias for the fixture class and avoid
duplicating its code:
```c++
class FooTest : public ::testing::Test { ... };
using FooDeathTest = FooTest;
TEST_F(FooTest, DoesThis) {
// normal test
}
TEST_F(FooDeathTest, DoesThat) {
// death test
}
```
### Regular Expression Syntax
On POSIX systems (e.g. Linux, Cygwin, and Mac), googletest uses the
[POSIX extended regular expression](http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04)
syntax. To learn about this syntax, you may want to read this
[Wikipedia entry](http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions).
On Windows, googletest uses its own simple regular expression implementation. It
lacks many features. For example, we don't support union (`"x|y"`), grouping
(`"(xy)"`), brackets (`"[xy]"`), and repetition count (`"x{5,7}"`), among
others. Below is what we do support (`A` denotes a literal character, period
(`.`), or a single `\\ ` escape sequence; `x` and `y` denote regular
expressions.):
Expression | Meaning
---------- | --------------------------------------------------------------
`c` | matches any literal character `c`
`\\d` | matches any decimal digit
`\\D` | matches any character that's not a decimal digit
`\\f` | matches `\f`
`\\n` | matches `\n`
`\\r` | matches `\r`
`\\s` | matches any ASCII whitespace, including `\n`
`\\S` | matches any character that's not a whitespace
`\\t` | matches `\t`
`\\v` | matches `\v`
`\\w` | matches any letter, `_`, or decimal digit
`\\W` | matches any character that `\\w` doesn't match
`\\c` | matches any literal character `c`, which must be a punctuation
`.` | matches any single character except `\n`
`A?` | matches 0 or 1 occurrences of `A`
`A*` | matches 0 or many occurrences of `A`
`A+` | matches 1 or many occurrences of `A`
`^` | matches the beginning of a string (not that of each line)
`$` | matches the end of a string (not that of each line)
`xy` | matches `x` followed by `y`
To help you determine which capability is available on your system, googletest
defines macros to govern which regular expression it is using. The macros are:
`GTEST_USES_SIMPLE_RE=1` or `GTEST_USES_POSIX_RE=1`. If you want your death
tests to work in all cases, you can either `#if` on these macros or use the more
limited syntax only.
### How It Works
Under the hood, `ASSERT_EXIT()` spawns a new process and executes the death test
statement in that process. The details of how precisely that happens depend on
the platform and the variable ::testing::GTEST_FLAG(death_test_style) (which is
initialized from the command-line flag `--gtest_death_test_style`).
* On POSIX systems, `fork()` (or `clone()` on Linux) is used to spawn the
child, after which:
* If the variable's value is `"fast"`, the death test statement is
immediately executed.
* If the variable's value is `"threadsafe"`, the child process re-executes
the unit test binary just as it was originally invoked, but with some
extra flags to cause just the single death test under consideration to
be run.
* On Windows, the child is spawned using the `CreateProcess()` API, and
re-executes the binary to cause just the single death test under
consideration to be run - much like the `threadsafe` mode on POSIX.
Other values for the variable are illegal and will cause the death test to fail.
Currently, the flag's default value is **"fast"**
1. the child's exit status satisfies the predicate, and
2. the child's stderr matches the regular expression.
If the death test statement runs to completion without dying, the child process
will nonetheless terminate, and the assertion fails.
### Death Tests And Threads
The reason for the two death test styles has to do with thread safety. Due to
well-known problems with forking in the presence of threads, death tests should
be run in a single-threaded context. Sometimes, however, it isn't feasible to
arrange that kind of environment. For example, statically-initialized modules
may start threads before main is ever reached. Once threads have been created,
it may be difficult or impossible to clean them up.
googletest has three features intended to raise awareness of threading issues.
1. A warning is emitted if multiple threads are running when a death test is
encountered.
2. Test suites with a name ending in "DeathTest" are run before all other
tests.
3. It uses `clone()` instead of `fork()` to spawn the child process on Linux
(`clone()` is not available on Cygwin and Mac), as `fork()` is more likely
to cause the child to hang when the parent process has multiple threads.
It's perfectly fine to create threads inside a death test statement; they are
executed in a separate process and cannot affect the parent.
### Death Test Styles
The "threadsafe" death test style was introduced in order to help mitigate the
risks of testing in a possibly multithreaded environment. It trades increased
test execution time (potentially dramatically so) for improved thread safety.
The automated testing framework does not set the style flag. You can choose a
particular style of death tests by setting the flag programmatically:
```c++
testing::FLAGS_gtest_death_test_style="threadsafe"
```
You can do this in `main()` to set the style for all death tests in the binary,
or in individual tests. Recall that flags are saved before running each test and
restored afterwards, so you need not do that yourself. For example:
```c++
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
::testing::FLAGS_gtest_death_test_style = "fast";
return RUN_ALL_TESTS();
}
TEST(MyDeathTest, TestOne) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
// This test is run in the "threadsafe" style:
ASSERT_DEATH(ThisShouldDie(), "");
}
TEST(MyDeathTest, TestTwo) {
// This test is run in the "fast" style:
ASSERT_DEATH(ThisShouldDie(), "");
}
```
### Caveats
The `statement` argument of `ASSERT_EXIT()` can be any valid C++ statement. If
it leaves the current function via a `return` statement or by throwing an
exception, the death test is considered to have failed. Some googletest macros
may return from the current function (e.g. `ASSERT_TRUE()`), so be sure to avoid
them in `statement`.
Since `statement` runs in the child process, any in-memory side effect (e.g.
modifying a variable, releasing memory, etc) it causes will *not* be observable
in the parent process. In particular, if you release memory in a death test,
your program will fail the heap check as the parent process will never see the
memory reclaimed. To solve this problem, you can
1. try not to free memory in a death test;
2. free the memory again in the parent process; or
3. do not use the heap checker in your program.
Due to an implementation detail, you cannot place multiple death test assertions
on the same line; otherwise, compilation will fail with an unobvious error
message.
Despite the improved thread safety afforded by the "threadsafe" style of death
test, thread problems such as deadlock are still possible in the presence of
handlers registered with `pthread_atfork(3)`.
## Using Assertions in Sub-routines
### Adding Traces to Assertions
If a test sub-routine is called from several places, when an assertion inside it
fails, it can be hard to tell which invocation of the sub-routine the failure is
from. You can alleviate this problem using extra logging or custom failure
messages, but that usually clutters up your tests. A better solution is to use
the `SCOPED_TRACE` macro or the `ScopedTrace` utility:
```c++
SCOPED_TRACE(message);
ScopedTrace trace("file_path", line_number, message);
```
where `message` can be anything streamable to `std::ostream`. `SCOPED_TRACE`
macro will cause the current file name, line number, and the given message to be
added in every failure message. `ScopedTrace` accepts explicit file name and
line number in arguments, which is useful for writing test helpers. The effect
will be undone when the control leaves the current lexical scope.
For example,
```c++
10: void Sub1(int n) {
11: EXPECT_EQ(Bar(n), 1);
12: EXPECT_EQ(Bar(n + 1), 2);
13: }
14:
15: TEST(FooTest, Bar) {
16: {
17: SCOPED_TRACE("A"); // This trace point will be included in
18: // every failure in this scope.
19: Sub1(1);
20: }
21: // Now it won't.
22: Sub1(9);
23: }
```
could result in messages like these:
```none
path/to/foo_test.cc:11: Failure
Value of: Bar(n)
Expected: 1
Actual: 2
Trace:
path/to/foo_test.cc:17: A
path/to/foo_test.cc:12: Failure
Value of: Bar(n + 1)
Expected: 2
Actual: 3
```
Without the trace, it would've been difficult to know which invocation of
`Sub1()` the two failures come from respectively. (You could add an extra
message to each assertion in `Sub1()` to indicate the value of `n`, but that's
tedious.)
Some tips on using `SCOPED_TRACE`:
1. With a suitable message, it's often enough to use `SCOPED_TRACE` at the
beginning of a sub-routine, instead of at each call site.
2. When calling sub-routines inside a loop, make the loop iterator part of the
message in `SCOPED_TRACE` such that you can know which iteration the failure
is from.
3. Sometimes the line number of the trace point is enough for identifying the
particular invocation of a sub-routine. In this case, you don't have to
choose a unique message for `SCOPED_TRACE`. You can simply use `""`.
4. You can use `SCOPED_TRACE` in an inner scope when there is one in the outer
scope. In this case, all active trace points will be included in the failure
messages, in reverse order they are encountered.
5. The trace dump is clickable in Emacs - hit `return` on a line number and
you'll be taken to that line in the source file!
### Propagating Fatal Failures
A common pitfall when using `ASSERT_*` and `FAIL*` is not understanding that
when they fail they only abort the _current function_, not the entire test. For
example, the following test will segfault:
```c++
void Subroutine() {
// Generates a fatal failure and aborts the current function.
ASSERT_EQ(1, 2);
// The following won't be executed.
...
}
TEST(FooTest, Bar) {
Subroutine(); // The intended behavior is for the fatal failure
// in Subroutine() to abort the entire test.
// The actual behavior: the function goes on after Subroutine() returns.
int* p = NULL;
*p = 3; // Segfault!
}
```
To alleviate this, googletest provides three different solutions. You could use
either exceptions, the `(ASSERT|EXPECT)_NO_FATAL_FAILURE` assertions or the
`HasFatalFailure()` function. They are described in the following two
subsections.
#### Asserting on Subroutines with an exception
The following code can turn ASSERT-failure into an exception:
```c++
class ThrowListener : public testing::EmptyTestEventListener {
void OnTestPartResult(const testing::TestPartResult& result) override {
if (result.type() == testing::TestPartResult::kFatalFailure) {
throw testing::AssertionException(result);
}
}
};
int main(int argc, char** argv) {
...
testing::UnitTest::GetInstance()->listeners().Append(new ThrowListener);
return RUN_ALL_TESTS();
}
```
This listener should be added after other listeners if you have any, otherwise
they won't see failed `OnTestPartResult`.
#### Asserting on Subroutines
As shown above, if your test calls a subroutine that has an `ASSERT_*` failure
in it, the test will continue after the subroutine returns. This may not be what
you want.
Often people want fatal failures to propagate like exceptions. For that
googletest offers the following macros:
Fatal assertion | Nonfatal assertion | Verifies
------------------------------------- | ------------------------------------- | --------
`ASSERT_NO_FATAL_FAILURE(statement);` | `EXPECT_NO_FATAL_FAILURE(statement);` | `statement` doesn't generate any new fatal failures in the current thread.
Only failures in the thread that executes the assertion are checked to determine
the result of this type of assertions. If `statement` creates new threads,
failures in these threads are ignored.
Examples:
```c++
ASSERT_NO_FATAL_FAILURE(Foo());
int i;
EXPECT_NO_FATAL_FAILURE({
i = Bar();
});
```
Assertions from multiple threads are currently not supported on Windows.
#### Checking for Failures in the Current Test
`HasFatalFailure()` in the `::testing::Test` class returns `true` if an
assertion in the current test has suffered a fatal failure. This allows
functions to catch fatal failures in a sub-routine and return early.
```c++
class Test {
public:
...
static bool HasFatalFailure();
};
```
The typical usage, which basically simulates the behavior of a thrown exception,
is:
```c++
TEST(FooTest, Bar) {
Subroutine();
// Aborts if Subroutine() had a fatal failure.
if (HasFatalFailure()) return;
// The following won't be executed.
...
}
```
If `HasFatalFailure()` is used outside of `TEST()` , `TEST_F()` , or a test
fixture, you must add the `::testing::Test::` prefix, as in:
```c++
if (::testing::Test::HasFatalFailure()) return;
```
Similarly, `HasNonfatalFailure()` returns `true` if the current test has at
least one non-fatal failure, and `HasFailure()` returns `true` if the current
test has at least one failure of either kind.
## Logging Additional Information
In your test code, you can call `RecordProperty("key", value)` to log additional
information, where `value` can be either a string or an `int`. The *last* value
recorded for a key will be emitted to the
[XML output](#generating-an-xml-report) if you specify one. For example, the
test
```c++
TEST_F(WidgetUsageTest, MinAndMaxWidgets) {
RecordProperty("MaximumWidgets", ComputeMaxUsage());
RecordProperty("MinimumWidgets", ComputeMinUsage());
}
```
will output XML like this:
```xml
...
<testcase name="MinAndMaxWidgets" status="run" time="0.006" classname="WidgetUsageTest" MaximumWidgets="12" MinimumWidgets="9" />
...
```
> NOTE:
>
> * `RecordProperty()` is a static member of the `Test` class. Therefore it
> needs to be prefixed with `::testing::Test::` if used outside of the
> `TEST` body and the test fixture class.
> * `*key*` must be a valid XML attribute name, and cannot conflict with the
> ones already used by googletest (`name`, `status`, `time`, `classname`,
> `type_param`, and `value_param`).
> * Calling `RecordProperty()` outside of the lifespan of a test is allowed.
> If it's called outside of a test but between a test suite's
> `SetUpTestSuite()` and `TearDownTestSuite()` methods, it will be
> attributed to the XML element for the test suite. If it's called outside
> of all test suites (e.g. in a test environment), it will be attributed to
> the top-level XML element.
## Sharing Resources Between Tests in the Same Test Suite
googletest creates a new test fixture object for each test in order to make
tests independent and easier to debug. However, sometimes tests use resources
that are expensive to set up, making the one-copy-per-test model prohibitively
expensive.
If the tests don't change the resource, there's no harm in their sharing a
single resource copy. So, in addition to per-test set-up/tear-down, googletest
also supports per-test-suite set-up/tear-down. To use it:
1. In your test fixture class (say `FooTest` ), declare as `static` some member
variables to hold the shared resources.
2. Outside your test fixture class (typically just below it), define those
member variables, optionally giving them initial values.
3. In the same test fixture class, define a `static void SetUpTestSuite()`
function (remember not to spell it as **`SetupTestSuite`** with a small
`u`!) to set up the shared resources and a `static void TearDownTestSuite()`
function to tear them down.
That's it! googletest automatically calls `SetUpTestSuite()` before running the
*first test* in the `FooTest` test suite (i.e. before creating the first
`FooTest` object), and calls `TearDownTestSuite()` after running the *last test*
in it (i.e. after deleting the last `FooTest` object). In between, the tests can
use the shared resources.
Remember that the test order is undefined, so your code can't depend on a test
preceding or following another. Also, the tests must either not modify the state
of any shared resource, or, if they do modify the state, they must restore the
state to its original value before passing control to the next test.
Here's an example of per-test-suite set-up and tear-down:
```c++
class FooTest : public ::testing::Test {
protected:
// Per-test-suite set-up.
// Called before the first test in this test suite.
// Can be omitted if not needed.
static void SetUpTestSuite() {
shared_resource_ = new ...;
}
// Per-test-suite tear-down.
// Called after the last test in this test suite.
// Can be omitted if not needed.
static void TearDownTestSuite() {
delete shared_resource_;
shared_resource_ = NULL;
}
// You can define per-test set-up logic as usual.
virtual void SetUp() { ... }
// You can define per-test tear-down logic as usual.
virtual void TearDown() { ... }
// Some expensive resource shared by all tests.
static T* shared_resource_;
};
T* FooTest::shared_resource_ = NULL;
TEST_F(FooTest, Test1) {
... you can refer to shared_resource_ here ...
}
TEST_F(FooTest, Test2) {
... you can refer to shared_resource_ here ...
}
```
NOTE: Though the above code declares `SetUpTestSuite()` protected, it may
sometimes be necessary to declare it public, such as when using it with
`TEST_P`.
## Global Set-Up and Tear-Down
Just as you can do set-up and tear-down at the test level and the test suite
level, you can also do it at the test program level. Here's how.
First, you subclass the `::testing::Environment` class to define a test
environment, which knows how to set-up and tear-down:
```c++
class Environment : public ::testing::Environment {
public:
virtual ~Environment() {}
// Override this to define how to set up the environment.
void SetUp() override {}
// Override this to define how to tear down the environment.
void TearDown() override {}
};
```
Then, you register an instance of your environment class with googletest by
calling the `::testing::AddGlobalTestEnvironment()` function:
```c++
Environment* AddGlobalTestEnvironment(Environment* env);
```
Now, when `RUN_ALL_TESTS()` is called, it first calls the `SetUp()` method of
each environment object, then runs the tests if none of the environments
reported fatal failures and `GTEST_SKIP()` was not called. `RUN_ALL_TESTS()`
always calls `TearDown()` with each environment object, regardless of whether or
not the tests were run.
It's OK to register multiple environment objects. In this suite, their `SetUp()`
will be called in the order they are registered, and their `TearDown()` will be
called in the reverse order.
Note that googletest takes ownership of the registered environment objects.
Therefore **do not delete them** by yourself.
You should call `AddGlobalTestEnvironment()` before `RUN_ALL_TESTS()` is called,
probably in `main()`. If you use `gtest_main`, you need to call this before
`main()` starts for it to take effect. One way to do this is to define a global
variable like this:
```c++
::testing::Environment* const foo_env =
::testing::AddGlobalTestEnvironment(new FooEnvironment);
```
However, we strongly recommend you to write your own `main()` and call
`AddGlobalTestEnvironment()` there, as relying on initialization of global
variables makes the code harder to read and may cause problems when you register
multiple environments from different translation units and the environments have
dependencies among them (remember that the compiler doesn't guarantee the order
in which global variables from different translation units are initialized).
## Value-Parameterized Tests
*Value-parameterized tests* allow you to test your code with different
parameters without writing multiple copies of the same test. This is useful in a
number of situations, for example:
* You have a piece of code whose behavior is affected by one or more
command-line flags. You want to make sure your code performs correctly for
various values of those flags.
* You want to test different implementations of an OO interface.
* You want to test your code over various inputs (a.k.a. data-driven testing).
This feature is easy to abuse, so please exercise your good sense when doing
it!
### How to Write Value-Parameterized Tests
To write value-parameterized tests, first you should define a fixture class. It
must be derived from both `testing::Test` and `testing::WithParamInterface<T>`
(the latter is a pure interface), where `T` is the type of your parameter
values. For convenience, you can just derive the fixture class from
`testing::TestWithParam<T>`, which itself is derived from both `testing::Test`
and `testing::WithParamInterface<T>`. `T` can be any copyable type. If it's a
raw pointer, you are responsible for managing the lifespan of the pointed
values.
NOTE: If your test fixture defines `SetUpTestSuite()` or `TearDownTestSuite()`
they must be declared **public** rather than **protected** in order to use
`TEST_P`.
```c++
class FooTest :
public testing::TestWithParam<const char*> {
// You can implement all the usual fixture class members here.
// To access the test parameter, call GetParam() from class
// TestWithParam<T>.
};
// Or, when you want to add parameters to a pre-existing fixture class:
class BaseTest : public testing::Test {
...
};
class BarTest : public BaseTest,
public testing::WithParamInterface<const char*> {
...
};
```
Then, use the `TEST_P` macro to define as many test patterns using this fixture
as you want. The `_P` suffix is for "parameterized" or "pattern", whichever you
prefer to think.
```c++
TEST_P(FooTest, DoesBlah) {
// Inside a test, access the test parameter with the GetParam() method
// of the TestWithParam<T> class:
EXPECT_TRUE(foo.Blah(GetParam()));
...
}
TEST_P(FooTest, HasBlahBlah) {
...
}
```
Finally, you can use `INSTANTIATE_TEST_SUITE_P` to instantiate the test suite
with any set of parameters you want. googletest defines a number of functions
for generating test parameters. They return what we call (surprise!) *parameter
generators*. Here is a summary of them, which are all in the `testing`
namespace:
<!-- mdformat off(github rendering does not support multiline tables) -->
| Parameter Generator | Behavior |
| ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
| `Range(begin, end [, step])` | Yields values `{begin, begin+step, begin+step+step, ...}`. The values do not include `end`. `step` defaults to 1. |
| `Values(v1, v2, ..., vN)` | Yields values `{v1, v2, ..., vN}`. |
| `ValuesIn(container)` and `ValuesIn(begin,end)` | Yields values from a C-style array, an STL-style container, or an iterator range `[begin, end)` |
| `Bool()` | Yields sequence `{false, true}`. |
| `Combine(g1, g2, ..., gN)` | Yields all combinations (Cartesian product) as std\:\:tuples of the values generated by the `N` generators. |
<!-- mdformat on-->
For more details, see the comments at the definitions of these functions.
The following statement will instantiate tests from the `FooTest` test suite
each with parameter values `"meeny"`, `"miny"`, and `"moe"`.
```c++
INSTANTIATE_TEST_SUITE_P(InstantiationName,
FooTest,
testing::Values("meeny", "miny", "moe"));
```
NOTE: The code above must be placed at global or namespace scope, not at
function scope.
NOTE: Don't forget this step! If you do your test will silently pass, but none
of its suites will ever run!
To distinguish different instances of the pattern (yes, you can instantiate it
more than once), the first argument to `INSTANTIATE_TEST_SUITE_P` is a prefix
that will be added to the actual test suite name. Remember to pick unique
prefixes for different instantiations. The tests from the instantiation above
will have these names:
* `InstantiationName/FooTest.DoesBlah/0` for `"meeny"`
* `InstantiationName/FooTest.DoesBlah/1` for `"miny"`
* `InstantiationName/FooTest.DoesBlah/2` for `"moe"`
* `InstantiationName/FooTest.HasBlahBlah/0` for `"meeny"`
* `InstantiationName/FooTest.HasBlahBlah/1` for `"miny"`
* `InstantiationName/FooTest.HasBlahBlah/2` for `"moe"`
You can use these names in [`--gtest_filter`](#running-a-subset-of-the-tests).
This statement will instantiate all tests from `FooTest` again, each with
parameter values `"cat"` and `"dog"`:
```c++
const char* pets[] = {"cat", "dog"};
INSTANTIATE_TEST_SUITE_P(AnotherInstantiationName, FooTest,
testing::ValuesIn(pets));
```
The tests from the instantiation above will have these names:
* `AnotherInstantiationName/FooTest.DoesBlah/0` for `"cat"`
* `AnotherInstantiationName/FooTest.DoesBlah/1` for `"dog"`
* `AnotherInstantiationName/FooTest.HasBlahBlah/0` for `"cat"`
* `AnotherInstantiationName/FooTest.HasBlahBlah/1` for `"dog"`
Please note that `INSTANTIATE_TEST_SUITE_P` will instantiate *all* tests in the
given test suite, whether their definitions come before or *after* the
`INSTANTIATE_TEST_SUITE_P` statement.
You can see [sample7_unittest.cc] and [sample8_unittest.cc] for more examples.
[sample7_unittest.cc]: ../samples/sample7_unittest.cc "Parameterized Test example"
[sample8_unittest.cc]: ../samples/sample8_unittest.cc "Parameterized Test example with multiple parameters"
### Creating Value-Parameterized Abstract Tests
In the above, we define and instantiate `FooTest` in the *same* source file.
Sometimes you may want to define value-parameterized tests in a library and let
other people instantiate them later. This pattern is known as *abstract tests*.
As an example of its application, when you are designing an interface you can
write a standard suite of abstract tests (perhaps using a factory function as
the test parameter) that all implementations of the interface are expected to
pass. When someone implements the interface, they can instantiate your suite to
get all the interface-conformance tests for free.
To define abstract tests, you should organize your code like this:
1. Put the definition of the parameterized test fixture class (e.g. `FooTest`)
in a header file, say `foo_param_test.h`. Think of this as *declaring* your
abstract tests.
2. Put the `TEST_P` definitions in `foo_param_test.cc`, which includes
`foo_param_test.h`. Think of this as *implementing* your abstract tests.
Once they are defined, you can instantiate them by including `foo_param_test.h`,
invoking `INSTANTIATE_TEST_SUITE_P()`, and depending on the library target that
contains `foo_param_test.cc`. You can instantiate the same abstract test suite
multiple times, possibly in different source files.
### Specifying Names for Value-Parameterized Test Parameters
The optional last argument to `INSTANTIATE_TEST_SUITE_P()` allows the user to
specify a function or functor that generates custom test name suffixes based on
the test parameters. The function should accept one argument of type
`testing::TestParamInfo<class ParamType>`, and return `std::string`.
`testing::PrintToStringParamName` is a builtin test suffix generator that
returns the value of `testing::PrintToString(GetParam())`. It does not work for
`std::string` or C strings.
NOTE: test names must be non-empty, unique, and may only contain ASCII
alphanumeric characters. In particular, they
[should not contain underscores](faq.md#why-should-test-suite-names-and-test-names-not-contain-underscore)
```c++
class MyTestSuite : public testing::TestWithParam<int> {};
TEST_P(MyTestSuite, MyTest)
{
std::cout << "Example Test Param: " << GetParam() << std::endl;
}
INSTANTIATE_TEST_SUITE_P(MyGroup, MyTestSuite, testing::Range(0, 10),
testing::PrintToStringParamName());
```
Providing a custom functor allows for more control over test parameter name
generation, especially for types where the automatic conversion does not
generate helpful parameter names (e.g. strings as demonstrated above). The
following example illustrates this for multiple parameters, an enumeration type
and a string, and also demonstrates how to combine generators. It uses a lambda
for conciseness:
```c++
enum class MyType { MY_FOO = 0, MY_BAR = 1 };
class MyTestSuite : public testing::TestWithParam<std::tuple<MyType, string>> {
};
INSTANTIATE_TEST_SUITE_P(
MyGroup, MyTestSuite,
testing::Combine(
testing::Values(MyType::VALUE_0, MyType::VALUE_1),
testing::ValuesIn("", "")),
[](const testing::TestParamInfo<MyTestSuite::ParamType>& info) {
string name = absl::StrCat(
std::get<0>(info.param) == MY_FOO ? "Foo" : "Bar", "_",
std::get<1>(info.param));
absl::c_replace_if(name, [](char c) { return !std::isalnum(c); }, '_');
return name;
});
```
## Typed Tests
Suppose you have multiple implementations of the same interface and want to make
sure that all of them satisfy some common requirements. Or, you may have defined
several types that are supposed to conform to the same "concept" and you want to
verify it. In both cases, you want the same test logic repeated for different
types.
While you can write one `TEST` or `TEST_F` for each type you want to test (and
you may even factor the test logic into a function template that you invoke from
the `TEST`), it's tedious and doesn't scale: if you want `m` tests over `n`
types, you'll end up writing `m*n` `TEST`s.
*Typed tests* allow you to repeat the same test logic over a list of types. You
only need to write the test logic once, although you must know the type list
when writing typed tests. Here's how you do it:
First, define a fixture class template. It should be parameterized by a type.
Remember to derive it from `::testing::Test`:
```c++
template <typename T>
class FooTest : public ::testing::Test {
public:
...
typedef std::list<T> List;
static T shared_;
T value_;
};
```
Next, associate a list of types with the test suite, which will be repeated for
each type in the list:
```c++
using MyTypes = ::testing::Types<char, int, unsigned int>;
TYPED_TEST_SUITE(FooTest, MyTypes);
```
The type alias (`using` or `typedef`) is necessary for the `TYPED_TEST_SUITE`
macro to parse correctly. Otherwise the compiler will think that each comma in
the type list introduces a new macro argument.
Then, use `TYPED_TEST()` instead of `TEST_F()` to define a typed test for this
test suite. You can repeat this as many times as you want:
```c++
TYPED_TEST(FooTest, DoesBlah) {
// Inside a test, refer to the special name TypeParam to get the type
// parameter. Since we are inside a derived class template, C++ requires
// us to visit the members of FooTest via 'this'.
TypeParam n = this->value_;
// To visit static members of the fixture, add the 'TestFixture::'
// prefix.
n += TestFixture::shared_;
// To refer to typedefs in the fixture, add the 'typename TestFixture::'
// prefix. The 'typename' is required to satisfy the compiler.
typename TestFixture::List values;
values.push_back(n);
...
}
TYPED_TEST(FooTest, HasPropertyA) { ... }
```
You can see [sample6_unittest.cc] for a complete example.
[sample6_unittest.cc]: ../samples/sample6_unittest.cc "Typed Test example"
## Type-Parameterized Tests
*Type-parameterized tests* are like typed tests, except that they don't require
you to know the list of types ahead of time. Instead, you can define the test
logic first and instantiate it with different type lists later. You can even
instantiate it more than once in the same program.
If you are designing an interface or concept, you can define a suite of
type-parameterized tests to verify properties that any valid implementation of
the interface/concept should have. Then, the author of each implementation can
just instantiate the test suite with their type to verify that it conforms to
the requirements, without having to write similar tests repeatedly. Here's an
example:
First, define a fixture class template, as we did with typed tests:
```c++
template <typename T>
class FooTest : public ::testing::Test {
...
};
```
Next, declare that you will define a type-parameterized test suite:
```c++
TYPED_TEST_SUITE_P(FooTest);
```
Then, use `TYPED_TEST_P()` to define a type-parameterized test. You can repeat
this as many times as you want:
```c++
TYPED_TEST_P(FooTest, DoesBlah) {
// Inside a test, refer to TypeParam to get the type parameter.
TypeParam n = 0;
...
}
TYPED_TEST_P(FooTest, HasPropertyA) { ... }
```
Now the tricky part: you need to register all test patterns using the
`REGISTER_TYPED_TEST_SUITE_P` macro before you can instantiate them. The first
argument of the macro is the test suite name; the rest are the names of the
tests in this test suite:
```c++
REGISTER_TYPED_TEST_SUITE_P(FooTest,
DoesBlah, HasPropertyA);
```
Finally, you are free to instantiate the pattern with the types you want. If you
put the above code in a header file, you can `#include` it in multiple C++
source files and instantiate it multiple times.
```c++
typedef ::testing::Types<char, int, unsigned int> MyTypes;
INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, MyTypes);
```
To distinguish different instances of the pattern, the first argument to the
`INSTANTIATE_TYPED_TEST_SUITE_P` macro is a prefix that will be added to the
actual test suite name. Remember to pick unique prefixes for different
instances.
In the special case where the type list contains only one type, you can write
that type directly without `::testing::Types<...>`, like this:
```c++
INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, int);
```
You can see [sample6_unittest.cc] for a complete example.
## Testing Private Code
If you change your software's internal implementation, your tests should not
break as long as the change is not observable by users. Therefore, **per the
black-box testing principle, most of the time you should test your code through
its public interfaces.**
**If you still find yourself needing to test internal implementation code,
consider if there's a better design.** The desire to test internal
implementation is often a sign that the class is doing too much. Consider
extracting an implementation class, and testing it. Then use that implementation
class in the original class.
If you absolutely have to test non-public interface code though, you can. There
are two cases to consider:
* Static functions ( *not* the same as static member functions!) or unnamed
namespaces, and
* Private or protected class members
To test them, we use the following special techniques:
* Both static functions and definitions/declarations in an unnamed namespace
are only visible within the same translation unit. To test them, you can
`#include` the entire `.cc` file being tested in your `*_test.cc` file.
(#including `.cc` files is not a good way to reuse code - you should not do
this in production code!)
However, a better approach is to move the private code into the
`foo::internal` namespace, where `foo` is the namespace your project
normally uses, and put the private declarations in a `*-internal.h` file.
Your production `.cc` files and your tests are allowed to include this
internal header, but your clients are not. This way, you can fully test your
internal implementation without leaking it to your clients.
* Private class members are only accessible from within the class or by
friends. To access a class' private members, you can declare your test
fixture as a friend to the class and define accessors in your fixture. Tests
using the fixture can then access the private members of your production
class via the accessors in the fixture. Note that even though your fixture
is a friend to your production class, your tests are not automatically
friends to it, as they are technically defined in sub-classes of the
fixture.
Another way to test private members is to refactor them into an
implementation class, which is then declared in a `*-internal.h` file. Your
clients aren't allowed to include this header but your tests can. Such is
called the
[Pimpl](https://www.gamedev.net/articles/programming/general-and-gameplay-programming/the-c-pimpl-r1794/)
(Private Implementation) idiom.
Or, you can declare an individual test as a friend of your class by adding
this line in the class body:
```c++
FRIEND_TEST(TestSuiteName, TestName);
```
For example,
```c++
// foo.h
class Foo {
...
private:
FRIEND_TEST(FooTest, BarReturnsZeroOnNull);
int Bar(void* x);
};
// foo_test.cc
...
TEST(FooTest, BarReturnsZeroOnNull) {
Foo foo;
EXPECT_EQ(foo.Bar(NULL), 0); // Uses Foo's private member Bar().
}
```
Pay special attention when your class is defined in a namespace, as you
should define your test fixtures and tests in the same namespace if you want
them to be friends of your class. For example, if the code to be tested
looks like:
```c++
namespace my_namespace {
class Foo {
friend class FooTest;
FRIEND_TEST(FooTest, Bar);
FRIEND_TEST(FooTest, Baz);
... definition of the class Foo ...
};
} // namespace my_namespace
```
Your test code should be something like:
```c++
namespace my_namespace {
class FooTest : public ::testing::Test {
protected:
...
};
TEST_F(FooTest, Bar) { ... }
TEST_F(FooTest, Baz) { ... }
} // namespace my_namespace
```
## "Catching" Failures
If you are building a testing utility on top of googletest, you'll want to test
your utility. What framework would you use to test it? googletest, of course.
The challenge is to verify that your testing utility reports failures correctly.
In frameworks that report a failure by throwing an exception, you could catch
the exception and assert on it. But googletest doesn't use exceptions, so how do
we test that a piece of code generates an expected failure?
gunit-spi.h contains some constructs to do this. After #including this header,
you can use
```c++
EXPECT_FATAL_FAILURE(statement, substring);
```
to assert that `statement` generates a fatal (e.g. `ASSERT_*`) failure in the
current thread whose message contains the given `substring`, or use
```c++
EXPECT_NONFATAL_FAILURE(statement, substring);
```
if you are expecting a non-fatal (e.g. `EXPECT_*`) failure.
Only failures in the current thread are checked to determine the result of this
type of expectations. If `statement` creates new threads, failures in these
threads are also ignored. If you want to catch failures in other threads as
well, use one of the following macros instead:
```c++
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substring);
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substring);
```
NOTE: Assertions from multiple threads are currently not supported on Windows.
For technical reasons, there are some caveats:
1. You cannot stream a failure message to either macro.
2. `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot reference
local non-static variables or non-static members of `this` object.
3. `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot return a
value.
## Registering tests programmatically
The `TEST` macros handle the vast majority of all use cases, but there are few
were runtime registration logic is required. For those cases, the framework
provides the `::testing::RegisterTest` that allows callers to register arbitrary
tests dynamically.
This is an advanced API only to be used when the `TEST` macros are insufficient.
The macros should be preferred when possible, as they avoid most of the
complexity of calling this function.
It provides the following signature:
```c++
template <typename Factory>
TestInfo* RegisterTest(const char* test_suite_name, const char* test_name,
const char* type_param, const char* value_param,
const char* file, int line, Factory factory);
```
The `factory` argument is a factory callable (move-constructible) object or
function pointer that creates a new instance of the Test object. It handles
ownership to the caller. The signature of the callable is `Fixture*()`, where
`Fixture` is the test fixture class for the test. All tests registered with the
same `test_suite_name` must return the same fixture type. This is checked at
runtime.
The framework will infer the fixture class from the factory and will call the
`SetUpTestSuite` and `TearDownTestSuite` for it.
Must be called before `RUN_ALL_TESTS()` is invoked, otherwise behavior is
undefined.
Use case example:
```c++
class MyFixture : public ::testing::Test {
public:
// All of these optional, just like in regular macro usage.
static void SetUpTestSuite() { ... }
static void TearDownTestSuite() { ... }
void SetUp() override { ... }
void TearDown() override { ... }
};
class MyTest : public MyFixture {
public:
explicit MyTest(int data) : data_(data) {}
void TestBody() override { ... }
private:
int data_;
};
void RegisterMyTests(const std::vector<int>& values) {
for (int v : values) {
::testing::RegisterTest(
"MyFixture", ("Test" + std::to_string(v)).c_str(), nullptr,
std::to_string(v).c_str(),
__FILE__, __LINE__,
// Important to use the fixture type as the return type here.
[=]() -> MyFixture* { return new MyTest(v); });
}
}
...
int main(int argc, char** argv) {
std::vector<int> values_to_test = LoadValuesFromConfig();
RegisterMyTests(values_to_test);
...
return RUN_ALL_TESTS();
}
```
## Getting the Current Test's Name
Sometimes a function may need to know the name of the currently running test.
For example, you may be using the `SetUp()` method of your test fixture to set
the golden file name based on which test is running. The `::testing::TestInfo`
class has this information:
```c++
namespace testing {
class TestInfo {
public:
// Returns the test suite name and the test name, respectively.
//
// Do NOT delete or free the return value - it's managed by the
// TestInfo class.
const char* test_suite_name() const;
const char* name() const;
};
}
```
To obtain a `TestInfo` object for the currently running test, call
`current_test_info()` on the `UnitTest` singleton object:
```c++
// Gets information about the currently running test.
// Do NOT delete the returned object - it's managed by the UnitTest class.
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
printf("We are in test %s of test suite %s.\n",
test_info->name(),
test_info->test_suite_name());
```
`current_test_info()` returns a null pointer if no test is running. In
particular, you cannot find the test suite name in `TestSuiteSetUp()`,
`TestSuiteTearDown()` (where you know the test suite name implicitly), or
functions called from them.
## Extending googletest by Handling Test Events
googletest provides an **event listener API** to let you receive notifications
about the progress of a test program and test failures. The events you can
listen to include the start and end of the test program, a test suite, or a test
method, among others. You may use this API to augment or replace the standard
console output, replace the XML output, or provide a completely different form
of output, such as a GUI or a database. You can also use test events as
checkpoints to implement a resource leak checker, for example.
### Defining Event Listeners
To define a event listener, you subclass either testing::TestEventListener or
testing::EmptyTestEventListener The former is an (abstract) interface, where
*each pure virtual method can be overridden to handle a test event* (For
example, when a test starts, the `OnTestStart()` method will be called.). The
latter provides an empty implementation of all methods in the interface, such
that a subclass only needs to override the methods it cares about.
When an event is fired, its context is passed to the handler function as an
argument. The following argument types are used:
* UnitTest reflects the state of the entire test program,
* TestSuite has information about a test suite, which can contain one or more
tests,
* TestInfo contains the state of a test, and
* TestPartResult represents the result of a test assertion.
An event handler function can examine the argument it receives to find out
interesting information about the event and the test program's state.
Here's an example:
```c++
class MinimalistPrinter : public ::testing::EmptyTestEventListener {
// Called before a test starts.
virtual void OnTestStart(const ::testing::TestInfo& test_info) {
printf("*** Test %s.%s starting.\n",
test_info.test_suite_name(), test_info.name());
}
// Called after a failed assertion or a SUCCESS().
virtual void OnTestPartResult(const ::testing::TestPartResult& test_part_result) {
printf("%s in %s:%d\n%s\n",
test_part_result.failed() ? "*** Failure" : "Success",
test_part_result.file_name(),
test_part_result.line_number(),
test_part_result.summary());
}
// Called after a test ends.
virtual void OnTestEnd(const ::testing::TestInfo& test_info) {
printf("*** Test %s.%s ending.\n",
test_info.test_suite_name(), test_info.name());
}
};
```
### Using Event Listeners
To use the event listener you have defined, add an instance of it to the
googletest event listener list (represented by class TestEventListeners - note
the "s" at the end of the name) in your `main()` function, before calling
`RUN_ALL_TESTS()`:
```c++
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
// Gets hold of the event listener list.
::testing::TestEventListeners& listeners =
::testing::UnitTest::GetInstance()->listeners();
// Adds a listener to the end. googletest takes the ownership.
listeners.Append(new MinimalistPrinter);
return RUN_ALL_TESTS();
}
```
There's only one problem: the default test result printer is still in effect, so
its output will mingle with the output from your minimalist printer. To suppress
the default printer, just release it from the event listener list and delete it.
You can do so by adding one line:
```c++
...
delete listeners.Release(listeners.default_result_printer());
listeners.Append(new MinimalistPrinter);
return RUN_ALL_TESTS();
```
Now, sit back and enjoy a completely different output from your tests. For more
details, see [sample9_unittest.cc].
[sample9_unittest.cc]: ../samples/sample9_unittest.cc "Event listener example"
You may append more than one listener to the list. When an `On*Start()` or
`OnTestPartResult()` event is fired, the listeners will receive it in the order
they appear in the list (since new listeners are added to the end of the list,
the default text printer and the default XML generator will receive the event
first). An `On*End()` event will be received by the listeners in the *reverse*
order. This allows output by listeners added later to be framed by output from
listeners added earlier.
### Generating Failures in Listeners
You may use failure-raising macros (`EXPECT_*()`, `ASSERT_*()`, `FAIL()`, etc)
when processing an event. There are some restrictions:
1. You cannot generate any failure in `OnTestPartResult()` (otherwise it will
cause `OnTestPartResult()` to be called recursively).
2. A listener that handles `OnTestPartResult()` is not allowed to generate any
failure.
When you add listeners to the listener list, you should put listeners that
handle `OnTestPartResult()` *before* listeners that can generate failures. This
ensures that failures generated by the latter are attributed to the right test
by the former.
See [sample10_unittest.cc] for an example of a failure-raising listener.
[sample10_unittest.cc]: ../samples/sample10_unittest.cc "Failure-raising listener example"
## Running Test Programs: Advanced Options
googletest test programs are ordinary executables. Once built, you can run them
directly and affect their behavior via the following environment variables
and/or command line flags. For the flags to work, your programs must call
`::testing::InitGoogleTest()` before calling `RUN_ALL_TESTS()`.
To see a list of supported flags and their usage, please run your test program
with the `--help` flag. You can also use `-h`, `-?`, or `/?` for short.
If an option is specified both by an environment variable and by a flag, the
latter takes precedence.
### Selecting Tests
#### Listing Test Names
Sometimes it is necessary to list the available tests in a program before
running them so that a filter may be applied if needed. Including the flag
`--gtest_list_tests` overrides all other flags and lists tests in the following
format:
```none
TestSuite1.
TestName1
TestName2
TestSuite2.
TestName
```
None of the tests listed are actually run if the flag is provided. There is no
corresponding environment variable for this flag.
#### Running a Subset of the Tests
By default, a googletest program runs all tests the user has defined. Sometimes,
you want to run only a subset of the tests (e.g. for debugging or quickly
verifying a change). If you set the `GTEST_FILTER` environment variable or the
`--gtest_filter` flag to a filter string, googletest will only run the tests
whose full names (in the form of `TestSuiteName.TestName`) match the filter.
The format of a filter is a '`:`'-separated list of wildcard patterns (called
the *positive patterns*) optionally followed by a '`-`' and another
'`:`'-separated pattern list (called the *negative patterns*). A test matches
the filter if and only if it matches any of the positive patterns but does not
match any of the negative patterns.
A pattern may contain `'*'` (matches any string) or `'?'` (matches any single
character). For convenience, the filter `'*-NegativePatterns'` can be also
written as `'-NegativePatterns'`.
For example:
* `./foo_test` Has no flag, and thus runs all its tests.
* `./foo_test --gtest_filter=*` Also runs everything, due to the single
match-everything `*` value.
* `./foo_test --gtest_filter=FooTest.*` Runs everything in test suite
`FooTest` .
* `./foo_test --gtest_filter=*Null*:*Constructor*` Runs any test whose full
name contains either `"Null"` or `"Constructor"` .
* `./foo_test --gtest_filter=-*DeathTest.*` Runs all non-death tests.
* `./foo_test --gtest_filter=FooTest.*-FooTest.Bar` Runs everything in test
suite `FooTest` except `FooTest.Bar`.
* `./foo_test --gtest_filter=FooTest.*:BarTest.*-FooTest.Bar:BarTest.Foo` Runs
everything in test suite `FooTest` except `FooTest.Bar` and everything in
test suite `BarTest` except `BarTest.Foo`.
#### Temporarily Disabling Tests
If you have a broken test that you cannot fix right away, you can add the
`DISABLED_` prefix to its name. This will exclude it from execution. This is
better than commenting out the code or using `#if 0`, as disabled tests are
still compiled (and thus won't rot).
If you need to disable all tests in a test suite, you can either add `DISABLED_`
to the front of the name of each test, or alternatively add it to the front of
the test suite name.
For example, the following tests won't be run by googletest, even though they
will still be compiled:
```c++
// Tests that Foo does Abc.
TEST(FooTest, DISABLED_DoesAbc) { ... }
class DISABLED_BarTest : public ::testing::Test { ... };
// Tests that Bar does Xyz.
TEST_F(DISABLED_BarTest, DoesXyz) { ... }
```
NOTE: This feature should only be used for temporary pain-relief. You still have
to fix the disabled tests at a later date. As a reminder, googletest will print
a banner warning you if a test program contains any disabled tests.
TIP: You can easily count the number of disabled tests you have using `gsearch`
and/or `grep`. This number can be used as a metric for improving your test
quality.
#### Temporarily Enabling Disabled Tests
To include disabled tests in test execution, just invoke the test program with
the `--gtest_also_run_disabled_tests` flag or set the
`GTEST_ALSO_RUN_DISABLED_TESTS` environment variable to a value other than `0`.
You can combine this with the `--gtest_filter` flag to further select which
disabled tests to run.
### Repeating the Tests
Once in a while you'll run into a test whose result is hit-or-miss. Perhaps it
will fail only 1% of the time, making it rather hard to reproduce the bug under
a debugger. This can be a major source of frustration.
The `--gtest_repeat` flag allows you to repeat all (or selected) test methods in
a program many times. Hopefully, a flaky test will eventually fail and give you
a chance to debug. Here's how to use it:
```none
$ foo_test --gtest_repeat=1000
Repeat foo_test 1000 times and don't stop at failures.
$ foo_test --gtest_repeat=-1
A negative count means repeating forever.
$ foo_test --gtest_repeat=1000 --gtest_break_on_failure
Repeat foo_test 1000 times, stopping at the first failure. This
is especially useful when running under a debugger: when the test
fails, it will drop into the debugger and you can then inspect
variables and stacks.
$ foo_test --gtest_repeat=1000 --gtest_filter=FooBar.*
Repeat the tests whose name matches the filter 1000 times.
```
If your test program contains
[global set-up/tear-down](#global-set-up-and-tear-down) code, it will be
repeated in each iteration as well, as the flakiness may be in it. You can also
specify the repeat count by setting the `GTEST_REPEAT` environment variable.
### Shuffling the Tests
You can specify the `--gtest_shuffle` flag (or set the `GTEST_SHUFFLE`
environment variable to `1`) to run the tests in a program in a random order.
This helps to reveal bad dependencies between tests.
By default, googletest uses a random seed calculated from the current time.
Therefore you'll get a different order every time. The console output includes
the random seed value, such that you can reproduce an order-related test failure
later. To specify the random seed explicitly, use the `--gtest_random_seed=SEED`
flag (or set the `GTEST_RANDOM_SEED` environment variable), where `SEED` is an
integer in the range [0, 99999]. The seed value 0 is special: it tells
googletest to do the default behavior of calculating the seed from the current
time.
If you combine this with `--gtest_repeat=N`, googletest will pick a different
random seed and re-shuffle the tests in each iteration.
### Controlling Test Output
#### Colored Terminal Output
googletest can use colors in its terminal output to make it easier to spot the
important information:
<code>
...<br/>
<font color="green">[----------]</font><font color="black"> 1 test from
FooTest</font><br/>
<font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
FooTest.DoesAbc</font><br/>
<font color="green">[ &nbsp; &nbsp; &nbsp; OK ]</font><font color="black">
FooTest.DoesAbc </font><br/>
<font color="green">[----------]</font><font color="black">
2 tests from BarTest</font><br/>
<font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
BarTest.HasXyzProperty </font><br/>
<font color="green">[ &nbsp; &nbsp; &nbsp; OK ]</font><font color="black">
BarTest.HasXyzProperty</font><br/>
<font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
BarTest.ReturnsTrueOnSuccess ... some error messages ...</font><br/>
<font color="red">[ &nbsp; FAILED ]</font><font color="black">
BarTest.ReturnsTrueOnSuccess ...</font><br/>
<font color="green">[==========]</font><font color="black">
30 tests from 14 test suites ran.</font><br/>
<font color="green">[ &nbsp; PASSED ]</font><font color="black">
28 tests.</font><br/>
<font color="red">[ &nbsp; FAILED ]</font><font color="black">
2 tests, listed below:</font><br/>
<font color="red">[ &nbsp; FAILED ]</font><font color="black">
BarTest.ReturnsTrueOnSuccess</font><br/>
<font color="red">[ &nbsp; FAILED ]</font><font color="black">
AnotherTest.DoesXyz<br/>
<br/>
2 FAILED TESTS
</font>
</code>
You can set the `GTEST_COLOR` environment variable or the `--gtest_color`
command line flag to `yes`, `no`, or `auto` (the default) to enable colors,
disable colors, or let googletest decide. When the value is `auto`, googletest
will use colors if and only if the output goes to a terminal and (on non-Windows
platforms) the `TERM` environment variable is set to `xterm` or `xterm-color`.
#### Suppressing the Elapsed Time
By default, googletest prints the time it takes to run each test. To disable
that, run the test program with the `--gtest_print_time=0` command line flag, or
set the GTEST_PRINT_TIME environment variable to `0`.
#### Suppressing UTF-8 Text Output
In case of assertion failures, googletest prints expected and actual values of
type `string` both as hex-encoded strings as well as in readable UTF-8 text if
they contain valid non-ASCII UTF-8 characters. If you want to suppress the UTF-8
text because, for example, you don't have an UTF-8 compatible output medium, run
the test program with `--gtest_print_utf8=0` or set the `GTEST_PRINT_UTF8`
environment variable to `0`.
#### Generating an XML Report
googletest can emit a detailed XML report to a file in addition to its normal
textual output. The report contains the duration of each test, and thus can help
you identify slow tests. The report is also used by the http://unittest
dashboard to show per-test-method error messages.
To generate the XML report, set the `GTEST_OUTPUT` environment variable or the
`--gtest_output` flag to the string `"xml:path_to_output_file"`, which will
create the file at the given location. You can also just use the string `"xml"`,
in which case the output can be found in the `test_detail.xml` file in the
current directory.
If you specify a directory (for example, `"xml:output/directory/"` on Linux or
`"xml:output\directory\"` on Windows), googletest will create the XML file in
that directory, named after the test executable (e.g. `foo_test.xml` for test
program `foo_test` or `foo_test.exe`). If the file already exists (perhaps left
over from a previous run), googletest will pick a different name (e.g.
`foo_test_1.xml`) to avoid overwriting it.
The report is based on the `junitreport` Ant task. Since that format was
originally intended for Java, a little interpretation is required to make it
apply to googletest tests, as shown here:
```xml
<testsuites name="AllTests" ...>
<testsuite name="test_case_name" ...>
<testcase name="test_name" ...>
<failure message="..."/>
<failure message="..."/>
<failure message="..."/>
</testcase>
</testsuite>
</testsuites>
```
* The root `<testsuites>` element corresponds to the entire test program.
* `<testsuite>` elements correspond to googletest test suites.
* `<testcase>` elements correspond to googletest test functions.
For instance, the following program
```c++
TEST(MathTest, Addition) { ... }
TEST(MathTest, Subtraction) { ... }
TEST(LogicTest, NonContradiction) { ... }
```
could generate this report:
```xml
<?xml version="1.0" encoding="UTF-8"?>
<testsuites tests="3" failures="1" errors="0" time="0.035" timestamp="2011-10-31T18:52:42" name="AllTests">
<testsuite name="MathTest" tests="2" failures="1" errors="0" time="0.015">
<testcase name="Addition" status="run" time="0.007" classname="">
<failure message="Value of: add(1, 1)&#x0A; Actual: 3&#x0A;Expected: 2" type="">...</failure>
<failure message="Value of: add(1, -1)&#x0A; Actual: 1&#x0A;Expected: 0" type="">...</failure>
</testcase>
<testcase name="Subtraction" status="run" time="0.005" classname="">
</testcase>
</testsuite>
<testsuite name="LogicTest" tests="1" failures="0" errors="0" time="0.005">
<testcase name="NonContradiction" status="run" time="0.005" classname="">
</testcase>
</testsuite>
</testsuites>
```
Things to note:
* The `tests` attribute of a `<testsuites>` or `<testsuite>` element tells how
many test functions the googletest program or test suite contains, while the
`failures` attribute tells how many of them failed.
* The `time` attribute expresses the duration of the test, test suite, or
entire test program in seconds.
* The `timestamp` attribute records the local date and time of the test
execution.
* Each `<failure>` element corresponds to a single failed googletest
assertion.
#### Generating a JSON Report
googletest can also emit a JSON report as an alternative format to XML. To
generate the JSON report, set the `GTEST_OUTPUT` environment variable or the
`--gtest_output` flag to the string `"json:path_to_output_file"`, which will
create the file at the given location. You can also just use the string
`"json"`, in which case the output can be found in the `test_detail.json` file
in the current directory.
The report format conforms to the following JSON Schema:
```json
{
"$schema": "http://json-schema.org/schema#",
"type": "object",
"definitions": {
"TestCase": {
"type": "object",
"properties": {
"name": { "type": "string" },
"tests": { "type": "integer" },
"failures": { "type": "integer" },
"disabled": { "type": "integer" },
"time": { "type": "string" },
"testsuite": {
"type": "array",
"items": {
"$ref": "#/definitions/TestInfo"
}
}
}
},
"TestInfo": {
"type": "object",
"properties": {
"name": { "type": "string" },
"status": {
"type": "string",
"enum": ["RUN", "NOTRUN"]
},
"time": { "type": "string" },
"classname": { "type": "string" },
"failures": {
"type": "array",
"items": {
"$ref": "#/definitions/Failure"
}
}
}
},
"Failure": {
"type": "object",
"properties": {
"failures": { "type": "string" },
"type": { "type": "string" }
}
}
},
"properties": {
"tests": { "type": "integer" },
"failures": { "type": "integer" },
"disabled": { "type": "integer" },
"errors": { "type": "integer" },
"timestamp": {
"type": "string",
"format": "date-time"
},
"time": { "type": "string" },
"name": { "type": "string" },
"testsuites": {
"type": "array",
"items": {
"$ref": "#/definitions/TestCase"
}
}
}
}
```
The report uses the format that conforms to the following Proto3 using the
[JSON encoding](https://developers.google.com/protocol-buffers/docs/proto3#json):
```proto
syntax = "proto3";
package googletest;
import "google/protobuf/timestamp.proto";
import "google/protobuf/duration.proto";
message UnitTest {
int32 tests = 1;
int32 failures = 2;
int32 disabled = 3;
int32 errors = 4;
google.protobuf.Timestamp timestamp = 5;
google.protobuf.Duration time = 6;
string name = 7;
repeated TestCase testsuites = 8;
}
message TestCase {
string name = 1;
int32 tests = 2;
int32 failures = 3;
int32 disabled = 4;
int32 errors = 5;
google.protobuf.Duration time = 6;
repeated TestInfo testsuite = 7;
}
message TestInfo {
string name = 1;
enum Status {
RUN = 0;
NOTRUN = 1;
}
Status status = 2;
google.protobuf.Duration time = 3;
string classname = 4;
message Failure {
string failures = 1;
string type = 2;
}
repeated Failure failures = 5;
}
```
For instance, the following program
```c++
TEST(MathTest, Addition) { ... }
TEST(MathTest, Subtraction) { ... }
TEST(LogicTest, NonContradiction) { ... }
```
could generate this report:
```json
{
"tests": 3,
"failures": 1,
"errors": 0,
"time": "0.035s",
"timestamp": "2011-10-31T18:52:42Z",
"name": "AllTests",
"testsuites": [
{
"name": "MathTest",
"tests": 2,
"failures": 1,
"errors": 0,
"time": "0.015s",
"testsuite": [
{
"name": "Addition",
"status": "RUN",
"time": "0.007s",
"classname": "",
"failures": [
{
"message": "Value of: add(1, 1)\n Actual: 3\nExpected: 2",
"type": ""
},
{
"message": "Value of: add(1, -1)\n Actual: 1\nExpected: 0",
"type": ""
}
]
},
{
"name": "Subtraction",
"status": "RUN",
"time": "0.005s",
"classname": ""
}
]
},
{
"name": "LogicTest",
"tests": 1,
"failures": 0,
"errors": 0,
"time": "0.005s",
"testsuite": [
{
"name": "NonContradiction",
"status": "RUN",
"time": "0.005s",
"classname": ""
}
]
}
]
}
```
IMPORTANT: The exact format of the JSON document is subject to change.
### Controlling How Failures Are Reported
#### Turning Assertion Failures into Break-Points
When running test programs under a debugger, it's very convenient if the
debugger can catch an assertion failure and automatically drop into interactive
mode. googletest's *break-on-failure* mode supports this behavior.
To enable it, set the `GTEST_BREAK_ON_FAILURE` environment variable to a value
other than `0`. Alternatively, you can use the `--gtest_break_on_failure`
command line flag.
#### Disabling Catching Test-Thrown Exceptions
googletest can be used either with or without exceptions enabled. If a test
throws a C++ exception or (on Windows) a structured exception (SEH), by default
googletest catches it, reports it as a test failure, and continues with the next
test method. This maximizes the coverage of a test run. Also, on Windows an
uncaught exception will cause a pop-up window, so catching the exceptions allows
you to run the tests automatically.
When debugging the test failures, however, you may instead want the exceptions
to be handled by the debugger, such that you can examine the call stack when an
exception is thrown. To achieve that, set the `GTEST_CATCH_EXCEPTIONS`
environment variable to `0`, or use the `--gtest_catch_exceptions=0` flag when
running the tests.
# Googletest FAQ
<!-- GOOGLETEST_CM0014 DO NOT DELETE -->
## Why should test suite names and test names not contain underscore?
Underscore (`_`) is special, as C++ reserves the following to be used by the
compiler and the standard library:
1. any identifier that starts with an `_` followed by an upper-case letter, and
2. any identifier that contains two consecutive underscores (i.e. `__`)
*anywhere* in its name.
User code is *prohibited* from using such identifiers.
Now let's look at what this means for `TEST` and `TEST_F`.
Currently `TEST(TestSuiteName, TestName)` generates a class named
`TestSuiteName_TestName_Test`. What happens if `TestSuiteName` or `TestName`
contains `_`?
1. If `TestSuiteName` starts with an `_` followed by an upper-case letter (say,
`_Foo`), we end up with `_Foo_TestName_Test`, which is reserved and thus
invalid.
2. If `TestSuiteName` ends with an `_` (say, `Foo_`), we get
`Foo__TestName_Test`, which is invalid.
3. If `TestName` starts with an `_` (say, `_Bar`), we get
`TestSuiteName__Bar_Test`, which is invalid.
4. If `TestName` ends with an `_` (say, `Bar_`), we get
`TestSuiteName_Bar__Test`, which is invalid.
So clearly `TestSuiteName` and `TestName` cannot start or end with `_`
(Actually, `TestSuiteName` can start with `_` -- as long as the `_` isn't
followed by an upper-case letter. But that's getting complicated. So for
simplicity we just say that it cannot start with `_`.).
It may seem fine for `TestSuiteName` and `TestName` to contain `_` in the
middle. However, consider this:
```c++
TEST(Time, Flies_Like_An_Arrow) { ... }
TEST(Time_Flies, Like_An_Arrow) { ... }
```
Now, the two `TEST`s will both generate the same class
(`Time_Flies_Like_An_Arrow_Test`). That's not good.
So for simplicity, we just ask the users to avoid `_` in `TestSuiteName` and
`TestName`. The rule is more constraining than necessary, but it's simple and
easy to remember. It also gives googletest some wiggle room in case its
implementation needs to change in the future.
If you violate the rule, there may not be immediate consequences, but your test
may (just may) break with a new compiler (or a new version of the compiler you
are using) or with a new version of googletest. Therefore it's best to follow
the rule.
## Why does googletest support `EXPECT_EQ(NULL, ptr)` and `ASSERT_EQ(NULL, ptr)` but not `EXPECT_NE(NULL, ptr)` and `ASSERT_NE(NULL, ptr)`?
First of all you can use `EXPECT_NE(nullptr, ptr)` and `ASSERT_NE(nullptr,
ptr)`. This is the preferred syntax in the style guide because nullptr does not
have the type problems that NULL does. Which is why NULL does not work.
Due to some peculiarity of C++, it requires some non-trivial template meta
programming tricks to support using `NULL` as an argument of the `EXPECT_XX()`
and `ASSERT_XX()` macros. Therefore we only do it where it's most needed
(otherwise we make the implementation of googletest harder to maintain and more
error-prone than necessary).
The `EXPECT_EQ()` macro takes the *expected* value as its first argument and the
*actual* value as the second. It's reasonable that someone wants to write
`EXPECT_EQ(NULL, some_expression)`, and this indeed was requested several times.
Therefore we implemented it.
The need for `EXPECT_NE(NULL, ptr)` isn't nearly as strong. When the assertion
fails, you already know that `ptr` must be `NULL`, so it doesn't add any
information to print `ptr` in this case. That means `EXPECT_TRUE(ptr != NULL)`
works just as well.
If we were to support `EXPECT_NE(NULL, ptr)`, for consistency we'll have to
support `EXPECT_NE(ptr, NULL)` as well, as unlike `EXPECT_EQ`, we don't have a
convention on the order of the two arguments for `EXPECT_NE`. This means using
the template meta programming tricks twice in the implementation, making it even
harder to understand and maintain. We believe the benefit doesn't justify the
cost.
Finally, with the growth of the gMock matcher library, we are encouraging people
to use the unified `EXPECT_THAT(value, matcher)` syntax more often in tests. One
significant advantage of the matcher approach is that matchers can be easily
combined to form new matchers, while the `EXPECT_NE`, etc, macros cannot be
easily combined. Therefore we want to invest more in the matchers than in the
`EXPECT_XX()` macros.
## I need to test that different implementations of an interface satisfy some common requirements. Should I use typed tests or value-parameterized tests?
For testing various implementations of the same interface, either typed tests or
value-parameterized tests can get it done. It's really up to you the user to
decide which is more convenient for you, depending on your particular case. Some
rough guidelines:
* Typed tests can be easier to write if instances of the different
implementations can be created the same way, modulo the type. For example,
if all these implementations have a public default constructor (such that
you can write `new TypeParam`), or if their factory functions have the same
form (e.g. `CreateInstance<TypeParam>()`).
* Value-parameterized tests can be easier to write if you need different code
patterns to create different implementations' instances, e.g. `new Foo` vs
`new Bar(5)`. To accommodate for the differences, you can write factory
function wrappers and pass these function pointers to the tests as their
parameters.
* When a typed test fails, the default output includes the name of the type,
which can help you quickly identify which implementation is wrong.
Value-parameterized tests only show the number of the failed iteration by
default. You will need to define a function that returns the iteration name
and pass it as the third parameter to INSTANTIATE_TEST_SUITE_P to have more
useful output.
* When using typed tests, you need to make sure you are testing against the
interface type, not the concrete types (in other words, you want to make
sure `implicit_cast<MyInterface*>(my_concrete_impl)` works, not just that
`my_concrete_impl` works). It's less likely to make mistakes in this area
when using value-parameterized tests.
I hope I didn't confuse you more. :-) If you don't mind, I'd suggest you to give
both approaches a try. Practice is a much better way to grasp the subtle
differences between the two tools. Once you have some concrete experience, you
can much more easily decide which one to use the next time.
## I got some run-time errors about invalid proto descriptors when using `ProtocolMessageEquals`. Help!
**Note:** `ProtocolMessageEquals` and `ProtocolMessageEquiv` are *deprecated*
now. Please use `EqualsProto`, etc instead.
`ProtocolMessageEquals` and `ProtocolMessageEquiv` were redefined recently and
are now less tolerant of invalid protocol buffer definitions. In particular, if
you have a `foo.proto` that doesn't fully qualify the type of a protocol message
it references (e.g. `message<Bar>` where it should be `message<blah.Bar>`), you
will now get run-time errors like:
```
... descriptor.cc:...] Invalid proto descriptor for file "path/to/foo.proto":
... descriptor.cc:...] blah.MyMessage.my_field: ".Bar" is not defined.
```
If you see this, your `.proto` file is broken and needs to be fixed by making
the types fully qualified. The new definition of `ProtocolMessageEquals` and
`ProtocolMessageEquiv` just happen to reveal your bug.
## My death test modifies some state, but the change seems lost after the death test finishes. Why?
Death tests (`EXPECT_DEATH`, etc) are executed in a sub-process s.t. the
expected crash won't kill the test program (i.e. the parent process). As a
result, any in-memory side effects they incur are observable in their respective
sub-processes, but not in the parent process. You can think of them as running
in a parallel universe, more or less.
In particular, if you use mocking and the death test statement invokes some mock
methods, the parent process will think the calls have never occurred. Therefore,
you may want to move your `EXPECT_CALL` statements inside the `EXPECT_DEATH`
macro.
## EXPECT_EQ(htonl(blah), blah_blah) generates weird compiler errors in opt mode. Is this a googletest bug?
Actually, the bug is in `htonl()`.
According to `'man htonl'`, `htonl()` is a *function*, which means it's valid to
use `htonl` as a function pointer. However, in opt mode `htonl()` is defined as
a *macro*, which breaks this usage.
Worse, the macro definition of `htonl()` uses a `gcc` extension and is *not*
standard C++. That hacky implementation has some ad hoc limitations. In
particular, it prevents you from writing `Foo<sizeof(htonl(x))>()`, where `Foo`
is a template that has an integral argument.
The implementation of `EXPECT_EQ(a, b)` uses `sizeof(... a ...)` inside a
template argument, and thus doesn't compile in opt mode when `a` contains a call
to `htonl()`. It is difficult to make `EXPECT_EQ` bypass the `htonl()` bug, as
the solution must work with different compilers on various platforms.
`htonl()` has some other problems as described in `//util/endian/endian.h`,
which defines `ghtonl()` to replace it. `ghtonl()` does the same thing `htonl()`
does, only without its problems. We suggest you to use `ghtonl()` instead of
`htonl()`, both in your tests and production code.
`//util/endian/endian.h` also defines `ghtons()`, which solves similar problems
in `htons()`.
Don't forget to add `//util/endian` to the list of dependencies in the `BUILD`
file wherever `ghtonl()` and `ghtons()` are used. The library consists of a
single header file and will not bloat your binary.
## The compiler complains about "undefined references" to some static const member variables, but I did define them in the class body. What's wrong?
If your class has a static data member:
```c++
// foo.h
class Foo {
...
static const int kBar = 100;
};
```
You also need to define it *outside* of the class body in `foo.cc`:
```c++
const int Foo::kBar; // No initializer here.
```
Otherwise your code is **invalid C++**, and may break in unexpected ways. In
particular, using it in googletest comparison assertions (`EXPECT_EQ`, etc) will
generate an "undefined reference" linker error. The fact that "it used to work"
doesn't mean it's valid. It just means that you were lucky. :-)
## Can I derive a test fixture from another?
Yes.
Each test fixture has a corresponding and same named test suite. This means only
one test suite can use a particular fixture. Sometimes, however, multiple test
cases may want to use the same or slightly different fixtures. For example, you
may want to make sure that all of a GUI library's test suites don't leak
important system resources like fonts and brushes.
In googletest, you share a fixture among test suites by putting the shared logic
in a base test fixture, then deriving from that base a separate fixture for each
test suite that wants to use this common logic. You then use `TEST_F()` to write
tests using each derived fixture.
Typically, your code looks like this:
```c++
// Defines a base test fixture.
class BaseTest : public ::testing::Test {
protected:
...
};
// Derives a fixture FooTest from BaseTest.
class FooTest : public BaseTest {
protected:
void SetUp() override {
BaseTest::SetUp(); // Sets up the base fixture first.
... additional set-up work ...
}
void TearDown() override {
... clean-up work for FooTest ...
BaseTest::TearDown(); // Remember to tear down the base fixture
// after cleaning up FooTest!
}
... functions and variables for FooTest ...
};
// Tests that use the fixture FooTest.
TEST_F(FooTest, Bar) { ... }
TEST_F(FooTest, Baz) { ... }
... additional fixtures derived from BaseTest ...
```
If necessary, you can continue to derive test fixtures from a derived fixture.
googletest has no limit on how deep the hierarchy can be.
For a complete example using derived test fixtures, see
[sample5_unittest.cc](../samples/sample5_unittest.cc).
## My compiler complains "void value not ignored as it ought to be." What does this mean?
You're probably using an `ASSERT_*()` in a function that doesn't return `void`.
`ASSERT_*()` can only be used in `void` functions, due to exceptions being
disabled by our build system. Please see more details
[here](advanced.md#assertion-placement).
## My death test hangs (or seg-faults). How do I fix it?
In googletest, death tests are run in a child process and the way they work is
delicate. To write death tests you really need to understand how they work.
Please make sure you have read [this](advanced.md#how-it-works).
In particular, death tests don't like having multiple threads in the parent
process. So the first thing you can try is to eliminate creating threads outside
of `EXPECT_DEATH()`. For example, you may want to use mocks or fake objects
instead of real ones in your tests.
Sometimes this is impossible as some library you must use may be creating
threads before `main()` is even reached. In this case, you can try to minimize
the chance of conflicts by either moving as many activities as possible inside
`EXPECT_DEATH()` (in the extreme case, you want to move everything inside), or
leaving as few things as possible in it. Also, you can try to set the death test
style to `"threadsafe"`, which is safer but slower, and see if it helps.
If you go with thread-safe death tests, remember that they rerun the test
program from the beginning in the child process. Therefore make sure your
program can run side-by-side with itself and is deterministic.
In the end, this boils down to good concurrent programming. You have to make
sure that there is no race conditions or dead locks in your program. No silver
bullet - sorry!
## Should I use the constructor/destructor of the test fixture or SetUp()/TearDown()? {#CtorVsSetUp}
The first thing to remember is that googletest does **not** reuse the same test
fixture object across multiple tests. For each `TEST_F`, googletest will create
a **fresh** test fixture object, immediately call `SetUp()`, run the test body,
call `TearDown()`, and then delete the test fixture object.
When you need to write per-test set-up and tear-down logic, you have the choice
between using the test fixture constructor/destructor or `SetUp()/TearDown()`.
The former is usually preferred, as it has the following benefits:
* By initializing a member variable in the constructor, we have the option to
make it `const`, which helps prevent accidental changes to its value and
makes the tests more obviously correct.
* In case we need to subclass the test fixture class, the subclass'
constructor is guaranteed to call the base class' constructor *first*, and
the subclass' destructor is guaranteed to call the base class' destructor
*afterward*. With `SetUp()/TearDown()`, a subclass may make the mistake of
forgetting to call the base class' `SetUp()/TearDown()` or call them at the
wrong time.
You may still want to use `SetUp()/TearDown()` in the following cases:
* C++ does not allow virtual function calls in constructors and destructors.
You can call a method declared as virtual, but it will not use dynamic
dispatch, it will use the definition from the class the constructor of which
is currently executing. This is because calling a virtual method before the
derived class constructor has a chance to run is very dangerous - the
virtual method might operate on uninitialized data. Therefore, if you need
to call a method that will be overridden in a derived class, you have to use
`SetUp()/TearDown()`.
* In the body of a constructor (or destructor), it's not possible to use the
`ASSERT_xx` macros. Therefore, if the set-up operation could cause a fatal
test failure that should prevent the test from running, it's necessary to
use `abort` <!-- GOOGLETEST_CM0015 DO NOT DELETE --> and abort the whole test executable,
or to use `SetUp()` instead of a constructor.
* If the tear-down operation could throw an exception, you must use
`TearDown()` as opposed to the destructor, as throwing in a destructor leads
to undefined behavior and usually will kill your program right away. Note
that many standard libraries (like STL) may throw when exceptions are
enabled in the compiler. Therefore you should prefer `TearDown()` if you
want to write portable tests that work with or without exceptions.
* The googletest team is considering making the assertion macros throw on
platforms where exceptions are enabled (e.g. Windows, Mac OS, and Linux
client-side), which will eliminate the need for the user to propagate
failures from a subroutine to its caller. Therefore, you shouldn't use
googletest assertions in a destructor if your code could run on such a
platform.
## The compiler complains "no matching function to call" when I use ASSERT_PRED*. How do I fix it?
If the predicate function you use in `ASSERT_PRED*` or `EXPECT_PRED*` is
overloaded or a template, the compiler will have trouble figuring out which
overloaded version it should use. `ASSERT_PRED_FORMAT*` and
`EXPECT_PRED_FORMAT*` don't have this problem.
If you see this error, you might want to switch to
`(ASSERT|EXPECT)_PRED_FORMAT*`, which will also give you a better failure
message. If, however, that is not an option, you can resolve the problem by
explicitly telling the compiler which version to pick.
For example, suppose you have
```c++
bool IsPositive(int n) {
return n > 0;
}
bool IsPositive(double x) {
return x > 0;
}
```
you will get a compiler error if you write
```c++
EXPECT_PRED1(IsPositive, 5);
```
However, this will work:
```c++
EXPECT_PRED1(static_cast<bool (*)(int)>(IsPositive), 5);
```
(The stuff inside the angled brackets for the `static_cast` operator is the type
of the function pointer for the `int`-version of `IsPositive()`.)
As another example, when you have a template function
```c++
template <typename T>
bool IsNegative(T x) {
return x < 0;
}
```
you can use it in a predicate assertion like this:
```c++
ASSERT_PRED1(IsNegative<int>, -5);
```
Things are more interesting if your template has more than one parameters. The
following won't compile:
```c++
ASSERT_PRED2(GreaterThan<int, int>, 5, 0);
```
as the C++ pre-processor thinks you are giving `ASSERT_PRED2` 4 arguments, which
is one more than expected. The workaround is to wrap the predicate function in
parentheses:
```c++
ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
```
## My compiler complains about "ignoring return value" when I call RUN_ALL_TESTS(). Why?
Some people had been ignoring the return value of `RUN_ALL_TESTS()`. That is,
instead of
```c++
return RUN_ALL_TESTS();
```
they write
```c++
RUN_ALL_TESTS();
```
This is **wrong and dangerous**. The testing services needs to see the return
value of `RUN_ALL_TESTS()` in order to determine if a test has passed. If your
`main()` function ignores it, your test will be considered successful even if it
has a googletest assertion failure. Very bad.
We have decided to fix this (thanks to Michael Chastain for the idea). Now, your
code will no longer be able to ignore `RUN_ALL_TESTS()` when compiled with
`gcc`. If you do so, you'll get a compiler error.
If you see the compiler complaining about you ignoring the return value of
`RUN_ALL_TESTS()`, the fix is simple: just make sure its value is used as the
return value of `main()`.
But how could we introduce a change that breaks existing tests? Well, in this
case, the code was already broken in the first place, so we didn't break it. :-)
## My compiler complains that a constructor (or destructor) cannot return a value. What's going on?
Due to a peculiarity of C++, in order to support the syntax for streaming
messages to an `ASSERT_*`, e.g.
```c++
ASSERT_EQ(1, Foo()) << "blah blah" << foo;
```
we had to give up using `ASSERT*` and `FAIL*` (but not `EXPECT*` and
`ADD_FAILURE*`) in constructors and destructors. The workaround is to move the
content of your constructor/destructor to a private void member function, or
switch to `EXPECT_*()` if that works. This
[section](advanced.md#assertion-placement) in the user's guide explains it.
## My SetUp() function is not called. Why?
C++ is case-sensitive. Did you spell it as `Setup()`?
Similarly, sometimes people spell `SetUpTestSuite()` as `SetupTestSuite()` and
wonder why it's never called.
## I have several test suites which share the same test fixture logic, do I have to define a new test fixture class for each of them? This seems pretty tedious.
You don't have to. Instead of
```c++
class FooTest : public BaseTest {};
TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }
class BarTest : public BaseTest {};
TEST_F(BarTest, Abc) { ... }
TEST_F(BarTest, Def) { ... }
```
you can simply `typedef` the test fixtures:
```c++
typedef BaseTest FooTest;
TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }
typedef BaseTest BarTest;
TEST_F(BarTest, Abc) { ... }
TEST_F(BarTest, Def) { ... }
```
## googletest output is buried in a whole bunch of LOG messages. What do I do?
The googletest output is meant to be a concise and human-friendly report. If
your test generates textual output itself, it will mix with the googletest
output, making it hard to read. However, there is an easy solution to this
problem.
Since `LOG` messages go to stderr, we decided to let googletest output go to
stdout. This way, you can easily separate the two using redirection. For
example:
```shell
$ ./my_test > gtest_output.txt
```
## Why should I prefer test fixtures over global variables?
There are several good reasons:
1. It's likely your test needs to change the states of its global variables.
This makes it difficult to keep side effects from escaping one test and
contaminating others, making debugging difficult. By using fixtures, each
test has a fresh set of variables that's different (but with the same
names). Thus, tests are kept independent of each other.
2. Global variables pollute the global namespace.
3. Test fixtures can be reused via subclassing, which cannot be done easily
with global variables. This is useful if many test suites have something in
common.
## What can the statement argument in ASSERT_DEATH() be?
`ASSERT_DEATH(*statement*, *regex*)` (or any death assertion macro) can be used
wherever `*statement*` is valid. So basically `*statement*` can be any C++
statement that makes sense in the current context. In particular, it can
reference global and/or local variables, and can be:
* a simple function call (often the case),
* a complex expression, or
* a compound statement.
Some examples are shown here:
```c++
// A death test can be a simple function call.
TEST(MyDeathTest, FunctionCall) {
ASSERT_DEATH(Xyz(5), "Xyz failed");
}
// Or a complex expression that references variables and functions.
TEST(MyDeathTest, ComplexExpression) {
const bool c = Condition();
ASSERT_DEATH((c ? Func1(0) : object2.Method("test")),
"(Func1|Method) failed");
}
// Death assertions can be used any where in a function. In
// particular, they can be inside a loop.
TEST(MyDeathTest, InsideLoop) {
// Verifies that Foo(0), Foo(1), ..., and Foo(4) all die.
for (int i = 0; i < 5; i++) {
EXPECT_DEATH_M(Foo(i), "Foo has \\d+ errors",
::testing::Message() << "where i is " << i);
}
}
// A death assertion can contain a compound statement.
TEST(MyDeathTest, CompoundStatement) {
// Verifies that at lease one of Bar(0), Bar(1), ..., and
// Bar(4) dies.
ASSERT_DEATH({
for (int i = 0; i < 5; i++) {
Bar(i);
}
},
"Bar has \\d+ errors");
}
```
gtest-death-test_test.cc contains more examples if you are interested.
## I have a fixture class `FooTest`, but `TEST_F(FooTest, Bar)` gives me error ``"no matching function for call to `FooTest::FooTest()'"``. Why?
Googletest needs to be able to create objects of your test fixture class, so it
must have a default constructor. Normally the compiler will define one for you.
However, there are cases where you have to define your own:
* If you explicitly declare a non-default constructor for class `FooTest`
(`DISALLOW_EVIL_CONSTRUCTORS()` does this), then you need to define a
default constructor, even if it would be empty.
* If `FooTest` has a const non-static data member, then you have to define the
default constructor *and* initialize the const member in the initializer
list of the constructor. (Early versions of `gcc` doesn't force you to
initialize the const member. It's a bug that has been fixed in `gcc 4`.)
## Why does ASSERT_DEATH complain about previous threads that were already joined?
With the Linux pthread library, there is no turning back once you cross the line
from single thread to multiple threads. The first time you create a thread, a
manager thread is created in addition, so you get 3, not 2, threads. Later when
the thread you create joins the main thread, the thread count decrements by 1,
but the manager thread will never be killed, so you still have 2 threads, which
means you cannot safely run a death test.
The new NPTL thread library doesn't suffer from this problem, as it doesn't
create a manager thread. However, if you don't control which machine your test
runs on, you shouldn't depend on this.
## Why does googletest require the entire test suite, instead of individual tests, to be named *DeathTest when it uses ASSERT_DEATH?
googletest does not interleave tests from different test suites. That is, it
runs all tests in one test suite first, and then runs all tests in the next test
suite, and so on. googletest does this because it needs to set up a test suite
before the first test in it is run, and tear it down afterwords. Splitting up
the test case would require multiple set-up and tear-down processes, which is
inefficient and makes the semantics unclean.
If we were to determine the order of tests based on test name instead of test
case name, then we would have a problem with the following situation:
```c++
TEST_F(FooTest, AbcDeathTest) { ... }
TEST_F(FooTest, Uvw) { ... }
TEST_F(BarTest, DefDeathTest) { ... }
TEST_F(BarTest, Xyz) { ... }
```
Since `FooTest.AbcDeathTest` needs to run before `BarTest.Xyz`, and we don't
interleave tests from different test suites, we need to run all tests in the
`FooTest` case before running any test in the `BarTest` case. This contradicts
with the requirement to run `BarTest.DefDeathTest` before `FooTest.Uvw`.
## But I don't like calling my entire test suite \*DeathTest when it contains both death tests and non-death tests. What do I do?
You don't have to, but if you like, you may split up the test suite into
`FooTest` and `FooDeathTest`, where the names make it clear that they are
related:
```c++
class FooTest : public ::testing::Test { ... };
TEST_F(FooTest, Abc) { ... }
TEST_F(FooTest, Def) { ... }
using FooDeathTest = FooTest;
TEST_F(FooDeathTest, Uvw) { ... EXPECT_DEATH(...) ... }
TEST_F(FooDeathTest, Xyz) { ... ASSERT_DEATH(...) ... }
```
## googletest prints the LOG messages in a death test's child process only when the test fails. How can I see the LOG messages when the death test succeeds?
Printing the LOG messages generated by the statement inside `EXPECT_DEATH()`
makes it harder to search for real problems in the parent's log. Therefore,
googletest only prints them when the death test has failed.
If you really need to see such LOG messages, a workaround is to temporarily
break the death test (e.g. by changing the regex pattern it is expected to
match). Admittedly, this is a hack. We'll consider a more permanent solution
after the fork-and-exec-style death tests are implemented.
## The compiler complains about "no match for 'operator<<'" when I use an assertion. What gives?
If you use a user-defined type `FooType` in an assertion, you must make sure
there is an `std::ostream& operator<<(std::ostream&, const FooType&)` function
defined such that we can print a value of `FooType`.
In addition, if `FooType` is declared in a name space, the `<<` operator also
needs to be defined in the *same* name space. See https://abseil.io/tips/49 for details.
## How do I suppress the memory leak messages on Windows?
Since the statically initialized googletest singleton requires allocations on
the heap, the Visual C++ memory leak detector will report memory leaks at the
end of the program run. The easiest way to avoid this is to use the
`_CrtMemCheckpoint` and `_CrtMemDumpAllObjectsSince` calls to not report any
statically initialized heap objects. See MSDN for more details and additional
heap check/debug routines.
## How can my code detect if it is running in a test?
If you write code that sniffs whether it's running in a test and does different
things accordingly, you are leaking test-only logic into production code and
there is no easy way to ensure that the test-only code paths aren't run by
mistake in production. Such cleverness also leads to
[Heisenbugs](https://en.wikipedia.org/wiki/Heisenbug). Therefore we strongly
advise against the practice, and googletest doesn't provide a way to do it.
In general, the recommended way to cause the code to behave differently under
test is [Dependency Injection](https://en.wikipedia.org/wiki/Dependency_injection). You can inject
different functionality from the test and from the production code. Since your
production code doesn't link in the for-test logic at all (the
[`testonly`](https://docs.bazel.build/versions/master/be/common-definitions.html#common.testonly) attribute for BUILD targets helps to ensure
that), there is no danger in accidentally running it.
However, if you *really*, *really*, *really* have no choice, and if you follow
the rule of ending your test program names with `_test`, you can use the
*horrible* hack of sniffing your executable name (`argv[0]` in `main()`) to know
whether the code is under test.
## How do I temporarily disable a test?
If you have a broken test that you cannot fix right away, you can add the
DISABLED_ prefix to its name. This will exclude it from execution. This is
better than commenting out the code or using #if 0, as disabled tests are still
compiled (and thus won't rot).
To include disabled tests in test execution, just invoke the test program with
the --gtest_also_run_disabled_tests flag.
## Is it OK if I have two separate `TEST(Foo, Bar)` test methods defined in different namespaces?
Yes.
The rule is **all test methods in the same test suite must use the same fixture
class.** This means that the following is **allowed** because both tests use the
same fixture class (`::testing::Test`).
```c++
namespace foo {
TEST(CoolTest, DoSomething) {
SUCCEED();
}
} // namespace foo
namespace bar {
TEST(CoolTest, DoSomething) {
SUCCEED();
}
} // namespace bar
```
However, the following code is **not allowed** and will produce a runtime error
from googletest because the test methods are using different test fixture
classes with the same test suite name.
```c++
namespace foo {
class CoolTest : public ::testing::Test {}; // Fixture foo::CoolTest
TEST_F(CoolTest, DoSomething) {
SUCCEED();
}
} // namespace foo
namespace bar {
class CoolTest : public ::testing::Test {}; // Fixture: bar::CoolTest
TEST_F(CoolTest, DoSomething) {
SUCCEED();
}
} // namespace bar
```
## Using GoogleTest from various build systems
GoogleTest comes with pkg-config files that can be used to determine all
necessary flags for compiling and linking to GoogleTest (and GoogleMock).
Pkg-config is a standardised plain-text format containing
* the includedir (-I) path
* necessary macro (-D) definitions
* further required flags (-pthread)
* the library (-L) path
* the library (-l) to link to
All current build systems support pkg-config in one way or another. For all
examples here we assume you want to compile the sample
`samples/sample3_unittest.cc`.
### CMake
Using `pkg-config` in CMake is fairly easy:
```cmake
cmake_minimum_required(VERSION 3.0)
cmake_policy(SET CMP0048 NEW)
project(my_gtest_pkgconfig VERSION 0.0.1 LANGUAGES CXX)
find_package(PkgConfig)
pkg_search_module(GTEST REQUIRED gtest_main)
add_executable(testapp samples/sample3_unittest.cc)
target_link_libraries(testapp ${GTEST_LDFLAGS})
target_compile_options(testapp PUBLIC ${GTEST_CFLAGS})
include(CTest)
add_test(first_and_only_test testapp)
```
It is generally recommended that you use `target_compile_options` + `_CFLAGS`
over `target_include_directories` + `_INCLUDE_DIRS` as the former includes not
just -I flags (GoogleTest might require a macro indicating to internal headers
that all libraries have been compiled with threading enabled. In addition,
GoogleTest might also require `-pthread` in the compiling step, and as such
splitting the pkg-config `Cflags` variable into include dirs and macros for
`target_compile_definitions()` might still miss this). The same recommendation
goes for using `_LDFLAGS` over the more commonplace `_LIBRARIES`, which happens
to discard `-L` flags and `-pthread`.
### Autotools
Finding GoogleTest in Autoconf and using it from Automake is also fairly easy:
In your `configure.ac`:
```
AC_PREREQ([2.69])
AC_INIT([my_gtest_pkgconfig], [0.0.1])
AC_CONFIG_SRCDIR([samples/sample3_unittest.cc])
AC_PROG_CXX
PKG_CHECK_MODULES([GTEST], [gtest_main])
AM_INIT_AUTOMAKE([foreign subdir-objects])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT
```
and in your `Makefile.am`:
```
check_PROGRAMS = testapp
TESTS = $(check_PROGRAMS)
testapp_SOURCES = samples/sample3_unittest.cc
testapp_CXXFLAGS = $(GTEST_CFLAGS)
testapp_LDADD = $(GTEST_LIBS)
```
### Meson
Meson natively uses pkgconfig to query dependencies:
```
project('my_gtest_pkgconfig', 'cpp', version : '0.0.1')
gtest_dep = dependency('gtest_main')
testapp = executable(
'testapp',
files(['samples/sample3_unittest.cc']),
dependencies : gtest_dep,
install : false)
test('first_and_only_test', testapp)
```
### Plain Makefiles
Since `pkg-config` is a small Unix command-line utility, it can be used in
handwritten `Makefile`s too:
```makefile
GTEST_CFLAGS = `pkg-config --cflags gtest_main`
GTEST_LIBS = `pkg-config --libs gtest_main`
.PHONY: tests all
tests: all
./testapp
all: testapp
testapp: testapp.o
$(CXX) $(CXXFLAGS) $(LDFLAGS) $< -o $@ $(GTEST_LIBS)
testapp.o: samples/sample3_unittest.cc
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $< -c -o $@ $(GTEST_CFLAGS)
```
### Help! pkg-config can't find GoogleTest!
Let's say you have a `CMakeLists.txt` along the lines of the one in this
tutorial and you try to run `cmake`. It is very possible that you get a failure
along the lines of:
```
-- Checking for one of the modules 'gtest_main'
CMake Error at /usr/share/cmake/Modules/FindPkgConfig.cmake:640 (message):
None of the required 'gtest_main' found
```
These failures are common if you installed GoogleTest yourself and have not
sourced it from a distro or other package manager. If so, you need to tell
pkg-config where it can find the `.pc` files containing the information. Say you
installed GoogleTest to `/usr/local`, then it might be that the `.pc` files are
installed under `/usr/local/lib64/pkgconfig`. If you set
```
export PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig
```
pkg-config will also try to look in `PKG_CONFIG_PATH` to find `gtest_main.pc`.
# Googletest Primer
## Introduction: Why googletest?
*googletest* helps you write better C++ tests.
googletest is a testing framework developed by the Testing Technology team with
Google's specific requirements and constraints in mind. Whether you work on
Linux, Windows, or a Mac, if you write C++ code, googletest can help you. And it
supports *any* kind of tests, not just unit tests.
So what makes a good test, and how does googletest fit in? We believe:
1. Tests should be *independent* and *repeatable*. It's a pain to debug a test
that succeeds or fails as a result of other tests. googletest isolates the
tests by running each of them on a different object. When a test fails,
googletest allows you to run it in isolation for quick debugging.
2. Tests should be well *organized* and reflect the structure of the tested
code. googletest groups related tests into test suites that can share data
and subroutines. This common pattern is easy to recognize and makes tests
easy to maintain. Such consistency is especially helpful when people switch
projects and start to work on a new code base.
3. Tests should be *portable* and *reusable*. Google has a lot of code that is
platform-neutral; its tests should also be platform-neutral. googletest
works on different OSes, with different compilers, with or without
exceptions, so googletest tests can work with a variety of configurations.
4. When tests fail, they should provide as much *information* about the problem
as possible. googletest doesn't stop at the first test failure. Instead, it
only stops the current test and continues with the next. You can also set up
tests that report non-fatal failures after which the current test continues.
Thus, you can detect and fix multiple bugs in a single run-edit-compile
cycle.
5. The testing framework should liberate test writers from housekeeping chores
and let them focus on the test *content*. googletest automatically keeps
track of all tests defined, and doesn't require the user to enumerate them
in order to run them.
6. Tests should be *fast*. With googletest, you can reuse shared resources
across tests and pay for the set-up/tear-down only once, without making
tests depend on each other.
Since googletest is based on the popular xUnit architecture, you'll feel right
at home if you've used JUnit or PyUnit before. If not, it will take you about 10
minutes to learn the basics and get started. So let's go!
## Beware of the nomenclature
_Note:_ There might be some confusion arising from different definitions of the
terms _Test_, _Test Case_ and _Test Suite_, so beware of misunderstanding these.
Historically, googletest started to use the term _Test Case_ for grouping
related tests, whereas current publications, including International Software
Testing Qualifications Board ([ISTQB](http://www.istqb.org/)) materials and
various textbooks on software quality, use the term
_[Test Suite][istqb test suite]_ for this.
The related term _Test_, as it is used in googletest, corresponds to the term
_[Test Case][istqb test case]_ of ISTQB and others.
The term _Test_ is commonly of broad enough sense, including ISTQB's definition
of _Test Case_, so it's not much of a problem here. But the term _Test Case_ as
was used in Google Test is of contradictory sense and thus confusing.
googletest recently started replacing the term _Test Case_ with _Test Suite_.
The preferred API is *TestSuite*. The older TestCase API is being slowly
deprecated and refactored away.
So please be aware of the different definitions of the terms:
<!-- mdformat off(github rendering does not support multiline tables) -->
Meaning | googletest Term | [ISTQB](http://www.istqb.org/) Term
:----------------------------------------------------------------------------------- | :---------------------- | :----------------------------------
Exercise a particular program path with specific input values and verify the results | [TEST()](#simple-tests) | [Test Case][istqb test case]
<!-- mdformat on -->
[istqb test case]: http://glossary.istqb.org/en/search/test%20case
[istqb test suite]: http://glossary.istqb.org/en/search/test%20suite
## Basic Concepts
When using googletest, you start by writing *assertions*, which are statements
that check whether a condition is true. An assertion's result can be *success*,
*nonfatal failure*, or *fatal failure*. If a fatal failure occurs, it aborts the
current function; otherwise the program continues normally.
*Tests* use assertions to verify the tested code's behavior. If a test crashes
or has a failed assertion, then it *fails*; otherwise it *succeeds*.
A *test suite* contains one or many tests. You should group your tests into test
suites that reflect the structure of the tested code. When multiple tests in a
test suite need to share common objects and subroutines, you can put them into a
*test fixture* class.
A *test program* can contain multiple test suites.
We'll now explain how to write a test program, starting at the individual
assertion level and building up to tests and test suites.
## Assertions
googletest assertions are macros that resemble function calls. You test a class
or function by making assertions about its behavior. When an assertion fails,
googletest prints the assertion's source file and line number location, along
with a failure message. You may also supply a custom failure message which will
be appended to googletest's message.
The assertions come in pairs that test the same thing but have different effects
on the current function. `ASSERT_*` versions generate fatal failures when they
fail, and **abort the current function**. `EXPECT_*` versions generate nonfatal
failures, which don't abort the current function. Usually `EXPECT_*` are
preferred, as they allow more than one failure to be reported in a test.
However, you should use `ASSERT_*` if it doesn't make sense to continue when the
assertion in question fails.
Since a failed `ASSERT_*` returns from the current function immediately,
possibly skipping clean-up code that comes after it, it may cause a space leak.
Depending on the nature of the leak, it may or may not be worth fixing - so keep
this in mind if you get a heap checker error in addition to assertion errors.
To provide a custom failure message, simply stream it into the macro using the
`<<` operator or a sequence of such operators. An example:
```c++
ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal length";
for (int i = 0; i < x.size(); ++i) {
EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i;
}
```
Anything that can be streamed to an `ostream` can be streamed to an assertion
macro--in particular, C strings and `string` objects. If a wide string
(`wchar_t*`, `TCHAR*` in `UNICODE` mode on Windows, or `std::wstring`) is
streamed to an assertion, it will be translated to UTF-8 when printed.
### Basic Assertions
These assertions do basic true/false condition testing.
Fatal assertion | Nonfatal assertion | Verifies
-------------------------- | -------------------------- | --------------------
`ASSERT_TRUE(condition);` | `EXPECT_TRUE(condition);` | `condition` is true
`ASSERT_FALSE(condition);` | `EXPECT_FALSE(condition);` | `condition` is false
Remember, when they fail, `ASSERT_*` yields a fatal failure and returns from the
current function, while `EXPECT_*` yields a nonfatal failure, allowing the
function to continue running. In either case, an assertion failure means its
containing test fails.
**Availability**: Linux, Windows, Mac.
### Binary Comparison
This section describes assertions that compare two values.
Fatal assertion | Nonfatal assertion | Verifies
------------------------ | ------------------------ | --------------
`ASSERT_EQ(val1, val2);` | `EXPECT_EQ(val1, val2);` | `val1 == val2`
`ASSERT_NE(val1, val2);` | `EXPECT_NE(val1, val2);` | `val1 != val2`
`ASSERT_LT(val1, val2);` | `EXPECT_LT(val1, val2);` | `val1 < val2`
`ASSERT_LE(val1, val2);` | `EXPECT_LE(val1, val2);` | `val1 <= val2`
`ASSERT_GT(val1, val2);` | `EXPECT_GT(val1, val2);` | `val1 > val2`
`ASSERT_GE(val1, val2);` | `EXPECT_GE(val1, val2);` | `val1 >= val2`
Value arguments must be comparable by the assertion's comparison operator or
you'll get a compiler error. We used to require the arguments to support the
`<<` operator for streaming to an `ostream`, but this is no longer necessary. If
`<<` is supported, it will be called to print the arguments when the assertion
fails; otherwise googletest will attempt to print them in the best way it can.
For more details and how to customize the printing of the arguments, see the
[documentation](../../googlemock/docs/cook_book.md#teaching-gmock-how-to-print-your-values).
These assertions can work with a user-defined type, but only if you define the
corresponding comparison operator (e.g., `==` or `<`). Since this is discouraged
by the Google
[C++ Style Guide](https://google.github.io/styleguide/cppguide.html#Operator_Overloading),
you may need to use `ASSERT_TRUE()` or `EXPECT_TRUE()` to assert the equality of
two objects of a user-defined type.
However, when possible, `ASSERT_EQ(actual, expected)` is preferred to
`ASSERT_TRUE(actual == expected)`, since it tells you `actual` and `expected`'s
values on failure.
Arguments are always evaluated exactly once. Therefore, it's OK for the
arguments to have side effects. However, as with any ordinary C/C++ function,
the arguments' evaluation order is undefined (i.e., the compiler is free to
choose any order), and your code should not depend on any particular argument
evaluation order.
`ASSERT_EQ()` does pointer equality on pointers. If used on two C strings, it
tests if they are in the same memory location, not if they have the same value.
Therefore, if you want to compare C strings (e.g. `const char*`) by value, use
`ASSERT_STREQ()`, which will be described later on. In particular, to assert
that a C string is `NULL`, use `ASSERT_STREQ(c_string, NULL)`. Consider using
`ASSERT_EQ(c_string, nullptr)` if c++11 is supported. To compare two `string`
objects, you should use `ASSERT_EQ`.
When doing pointer comparisons use `*_EQ(ptr, nullptr)` and `*_NE(ptr, nullptr)`
instead of `*_EQ(ptr, NULL)` and `*_NE(ptr, NULL)`. This is because `nullptr` is
typed, while `NULL` is not. See the [FAQ](faq.md) for more details.
If you're working with floating point numbers, you may want to use the floating
point variations of some of these macros in order to avoid problems caused by
rounding. See [Advanced googletest Topics](advanced.md) for details.
Macros in this section work with both narrow and wide string objects (`string`
and `wstring`).
**Availability**: Linux, Windows, Mac.
**Historical note**: Before February 2016 `*_EQ` had a convention of calling it
as `ASSERT_EQ(expected, actual)`, so lots of existing code uses this order. Now
`*_EQ` treats both parameters in the same way.
### String Comparison
The assertions in this group compare two **C strings**. If you want to compare
two `string` objects, use `EXPECT_EQ`, `EXPECT_NE`, and etc instead.
<!-- mdformat off(github rendering does not support multiline tables) -->
| Fatal assertion | Nonfatal assertion | Verifies |
| -------------------------- | ------------------------------ | -------------------------------------------------------- |
| `ASSERT_STREQ(str1,str2);` | `EXPECT_STREQ(str1,str2);` | the two C strings have the same content |
| `ASSERT_STRNE(str1,str2);` | `EXPECT_STRNE(str1,str2);` | the two C strings have different contents |
| `ASSERT_STRCASEEQ(str1,str2);` | `EXPECT_STRCASEEQ(str1,str2);` | the two C strings have the same content, ignoring case |
| `ASSERT_STRCASENE(str1,str2);` | `EXPECT_STRCASENE(str1,str2);` | the two C strings have different contents, ignoring case |
<!-- mdformat on-->
Note that "CASE" in an assertion name means that case is ignored. A `NULL`
pointer and an empty string are considered *different*.
`*STREQ*` and `*STRNE*` also accept wide C strings (`wchar_t*`). If a comparison
of two wide strings fails, their values will be printed as UTF-8 narrow strings.
**Availability**: Linux, Windows, Mac.
**See also**: For more string comparison tricks (substring, prefix, suffix, and
regular expression matching, for example), see [this](advanced.md) in the
Advanced googletest Guide.
## Simple Tests
To create a test:
1. Use the `TEST()` macro to define and name a test function. These are
ordinary C++ functions that don't return a value.
2. In this function, along with any valid C++ statements you want to include,
use the various googletest assertions to check values.
3. The test's result is determined by the assertions; if any assertion in the
test fails (either fatally or non-fatally), or if the test crashes, the
entire test fails. Otherwise, it succeeds.
```c++
TEST(TestSuiteName, TestName) {
... test body ...
}
```
`TEST()` arguments go from general to specific. The *first* argument is the name
of the test suite, and the *second* argument is the test's name within the test
case. Both names must be valid C++ identifiers, and they should not contain
any underscores (`_`). A test's *full name* consists of its containing test suite and
its individual name. Tests from different test suites can have the same
individual name.
For example, let's take a simple integer function:
```c++
int Factorial(int n); // Returns the factorial of n
```
A test suite for this function might look like:
```c++
// Tests factorial of 0.
TEST(FactorialTest, HandlesZeroInput) {
EXPECT_EQ(Factorial(0), 1);
}
// Tests factorial of positive numbers.
TEST(FactorialTest, HandlesPositiveInput) {
EXPECT_EQ(Factorial(1), 1);
EXPECT_EQ(Factorial(2), 2);
EXPECT_EQ(Factorial(3), 6);
EXPECT_EQ(Factorial(8), 40320);
}
```
googletest groups the test results by test suites, so logically related tests
should be in the same test suite; in other words, the first argument to their
`TEST()` should be the same. In the above example, we have two tests,
`HandlesZeroInput` and `HandlesPositiveInput`, that belong to the same test
suite `FactorialTest`.
When naming your test suites and tests, you should follow the same convention as
for
[naming functions and classes](https://google.github.io/styleguide/cppguide.html#Function_Names).
**Availability**: Linux, Windows, Mac.
## Test Fixtures: Using the Same Data Configuration for Multiple Tests {#same-data-multiple-tests}
If you find yourself writing two or more tests that operate on similar data, you
can use a *test fixture*. This allows you to reuse the same configuration of
objects for several different tests.
To create a fixture:
1. Derive a class from `::testing::Test` . Start its body with `protected:`, as
we'll want to access fixture members from sub-classes.
2. Inside the class, declare any objects you plan to use.
3. If necessary, write a default constructor or `SetUp()` function to prepare
the objects for each test. A common mistake is to spell `SetUp()` as
**`Setup()`** with a small `u` - Use `override` in C++11 to make sure you
spelled it correctly.
4. If necessary, write a destructor or `TearDown()` function to release any
resources you allocated in `SetUp()` . To learn when you should use the
constructor/destructor and when you should use `SetUp()/TearDown()`, read
the [FAQ](faq.md#CtorVsSetUp).
5. If needed, define subroutines for your tests to share.
When using a fixture, use `TEST_F()` instead of `TEST()` as it allows you to
access objects and subroutines in the test fixture:
```c++
TEST_F(TestFixtureName, TestName) {
... test body ...
}
```
Like `TEST()`, the first argument is the test suite name, but for `TEST_F()`
this must be the name of the test fixture class. You've probably guessed: `_F`
is for fixture.
Unfortunately, the C++ macro system does not allow us to create a single macro
that can handle both types of tests. Using the wrong macro causes a compiler
error.
Also, you must first define a test fixture class before using it in a
`TEST_F()`, or you'll get the compiler error "`virtual outside class
declaration`".
For each test defined with `TEST_F()`, googletest will create a *fresh* test
fixture at runtime, immediately initialize it via `SetUp()`, run the test,
clean up by calling `TearDown()`, and then delete the test fixture. Note that
different tests in the same test suite have different test fixture objects, and
googletest always deletes a test fixture before it creates the next one.
googletest does **not** reuse the same test fixture for multiple tests. Any
changes one test makes to the fixture do not affect other tests.
As an example, let's write tests for a FIFO queue class named `Queue`, which has
the following interface:
```c++
template <typename E> // E is the element type.
class Queue {
public:
Queue();
void Enqueue(const E& element);
E* Dequeue(); // Returns NULL if the queue is empty.
size_t size() const;
...
};
```
First, define a fixture class. By convention, you should give it the name
`FooTest` where `Foo` is the class being tested.
```c++
class QueueTest : public ::testing::Test {
protected:
void SetUp() override {
q1_.Enqueue(1);
q2_.Enqueue(2);
q2_.Enqueue(3);
}
// void TearDown() override {}
Queue<int> q0_;
Queue<int> q1_;
Queue<int> q2_;
};
```
In this case, `TearDown()` is not needed since we don't have to clean up after
each test, other than what's already done by the destructor.
Now we'll write tests using `TEST_F()` and this fixture.
```c++
TEST_F(QueueTest, IsEmptyInitially) {
EXPECT_EQ(q0_.size(), 0);
}
TEST_F(QueueTest, DequeueWorks) {
int* n = q0_.Dequeue();
EXPECT_EQ(n, nullptr);
n = q1_.Dequeue();
ASSERT_NE(n, nullptr);
EXPECT_EQ(*n, 1);
EXPECT_EQ(q1_.size(), 0);
delete n;
n = q2_.Dequeue();
ASSERT_NE(n, nullptr);
EXPECT_EQ(*n, 2);
EXPECT_EQ(q2_.size(), 1);
delete n;
}
```
The above uses both `ASSERT_*` and `EXPECT_*` assertions. The rule of thumb is
to use `EXPECT_*` when you want the test to continue to reveal more errors after
the assertion failure, and use `ASSERT_*` when continuing after failure doesn't
make sense. For example, the second assertion in the `Dequeue` test is
`ASSERT_NE(nullptr, n)`, as we need to dereference the pointer `n` later, which
would lead to a segfault when `n` is `NULL`.
When these tests run, the following happens:
1. googletest constructs a `QueueTest` object (let's call it `t1`).
2. `t1.SetUp()` initializes `t1`.
3. The first test (`IsEmptyInitially`) runs on `t1`.
4. `t1.TearDown()` cleans up after the test finishes.
5. `t1` is destructed.
6. The above steps are repeated on another `QueueTest` object, this time
running the `DequeueWorks` test.
**Availability**: Linux, Windows, Mac.
## Invoking the Tests
`TEST()` and `TEST_F()` implicitly register their tests with googletest. So,
unlike with many other C++ testing frameworks, you don't have to re-list all
your defined tests in order to run them.
After defining your tests, you can run them with `RUN_ALL_TESTS()`, which
returns `0` if all the tests are successful, or `1` otherwise. Note that
`RUN_ALL_TESTS()` runs *all tests* in your link unit--they can be from
different test suites, or even different source files.
When invoked, the `RUN_ALL_TESTS()` macro:
* Saves the state of all googletest flags.
* Creates a test fixture object for the first test.
* Initializes it via `SetUp()`.
* Runs the test on the fixture object.
* Cleans up the fixture via `TearDown()`.
* Deletes the fixture.
* Restores the state of all googletest flags.
* Repeats the above steps for the next test, until all tests have run.
If a fatal failure happens the subsequent steps will be skipped.
> IMPORTANT: You must **not** ignore the return value of `RUN_ALL_TESTS()`, or
> you will get a compiler error. The rationale for this design is that the
> automated testing service determines whether a test has passed based on its
> exit code, not on its stdout/stderr output; thus your `main()` function must
> return the value of `RUN_ALL_TESTS()`.
>
> Also, you should call `RUN_ALL_TESTS()` only **once**. Calling it more than
> once conflicts with some advanced googletest features (e.g., thread-safe
> [death tests](advanced.md#death-tests)) and thus is not supported.
**Availability**: Linux, Windows, Mac.
## Writing the main() Function
Write your own main() function, which should return the value of
`RUN_ALL_TESTS()`.
You can start from this boilerplate:
```c++
#include "this/package/foo.h"
#include "gtest/gtest.h"
namespace {
// The fixture for testing class Foo.
class FooTest : public ::testing::Test {
protected:
// You can remove any or all of the following functions if its body
// is empty.
FooTest() {
// You can do set-up work for each test here.
}
~FooTest() override {
// You can do clean-up work that doesn't throw exceptions here.
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
void SetUp() override {
// Code here will be called immediately after the constructor (right
// before each test).
}
void TearDown() override {
// Code here will be called immediately after each test (right
// before the destructor).
}
// Objects declared here can be used by all tests in the test suite for Foo.
};
// Tests that the Foo::Bar() method does Abc.
TEST_F(FooTest, MethodBarDoesAbc) {
const std::string input_filepath = "this/package/testdata/myinputfile.dat";
const std::string output_filepath = "this/package/testdata/myoutputfile.dat";
Foo f;
EXPECT_EQ(f.Bar(input_filepath, output_filepath), 0);
}
// Tests that Foo does Xyz.
TEST_F(FooTest, DoesXyz) {
// Exercises the Xyz feature of Foo.
}
} // namespace
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
```
The `::testing::InitGoogleTest()` function parses the command line for
googletest flags, and removes all recognized flags. This allows the user to
control a test program's behavior via various flags, which we'll cover in
the [AdvancedGuide](advanced.md). You **must** call this function before calling
`RUN_ALL_TESTS()`, or the flags won't be properly initialized.
On Windows, `InitGoogleTest()` also works with wide strings, so it can be used
in programs compiled in `UNICODE` mode as well.
But maybe you think that writing all those main() functions is too much work? We
agree with you completely, and that's why Google Test provides a basic
implementation of main(). If it fits your needs, then just link your test with
gtest\_main library and you are good to go.
NOTE: `ParseGUnitFlags()` is deprecated in favor of `InitGoogleTest()`.
## Known Limitations
* Google Test is designed to be thread-safe. The implementation is thread-safe
on systems where the `pthreads` library is available. It is currently
_unsafe_ to use Google Test assertions from two threads concurrently on
other systems (e.g. Windows). In most tests this is not an issue as usually
the assertions are done in the main thread. If you want to help, you can
volunteer to implement the necessary synchronization primitives in
`gtest-port.h` for your platform.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment