## 快速使用 Windows 下下载onnxruntime库,解开到某个位置,指定onnxruntime目录按以下方式: ``` cmake -DCMAKE_BUILD_TYPE=release -DONNXRUNTIME_DIR=D:\\thirdpart\\onnxruntime .. ```` 使用 -DONNXRUNTIME_DIR 指向onnxruntime目录,该目录下有include以及lib ``` onnxruntime_xxx ├───include └───lib ``` Windows下已经预置fftw3及openblas库。 ## 支持平台 - Windows - Linux/Unix ## 依赖 - fftw3 - openblas - onnxruntime ## 导出onnx格式模型文件 安装 modelscope与FunASR,[安装文档](https://github.com/alibaba-damo-academy/FunASR/wiki) ```shell pip config set global.index-url https://mirror.sjtu.edu.cn/pypi/web/simple #推荐使用上交pip源 pip install "modelscope[audio_asr]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html git clone https://github.com/alibaba/FunASR.git && cd FunASR pip install --editable ./ ``` 导出onnx模型,[详见](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export),参考示例,从modelscope中模型导出: ``` python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true ``` ## Building Guidance ``` git clone https://github.com/RapidAI/RapidASR.git cd RapidASR/cpp_onnx/ mkdir build cd build # download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0 # here we get a copy of onnxruntime for linux 64 wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz #ls # onnxruntime-linux-x64-1.14.0 onnxruntime-linux-x64-1.14.0.tgz #install fftw3-dev apt install libfftw3-dev #install openblas apt install libopenblas-dev # build cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/mnt/c/Users/ma139/RapidASR/cpp_onnx/build/onnxruntime-linux-x64-1.14.0 make # then in the subfolder tester of current direcotry, you will see a program, tester ````