# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deepspeech2 ASR Online Model""" import numpy as np import onnxruntime as ort from .modules.ctc import CTCDecoder class DeepSpeech2ModelOnline(object): def __init__(self, encoder_onnx_path): self.encoder_sess = ort.InferenceSession(encoder_onnx_path) self.decoder = CTCDecoder() def decode(self, audio, audio_len): onnx_inputs_name = self.encoder_sess.get_inputs() ort_inputs = { onnx_inputs_name[0].name: np.array(audio).astype(np.float32), onnx_inputs_name[1].name: np.array([audio_len]).astype(np.int64), onnx_inputs_name[2].name: np.zeros([5, 1, 1024]).astype(np.float32), onnx_inputs_name[3].name: np.zeros([5, 1, 1024]).astype(np.float32) } ort_outputs = self.encoder_sess.run(None, ort_inputs) probs, eouts_len, _, _ = ort_outputs batch_size = probs.shape[0] self.decoder.reset_decoder(batch_size=batch_size) self.decoder.next(probs, eouts_len) trans_best, trans_beam = self.decoder.decode() return trans_best