#### 基于Wenet训练所得模型的推理代码 - 项目来源:[wenet/aishell/s0](https://github.com/wenet-e2e/wenet/blob/main/examples/aishell/s0/README.md) - 运行环境:Python 3.7 | CPU | 不依赖torch和torchaudio #### 使用方法 1. 下载整个`python/base_wenet`目录 2. 安装依赖环境 - 安装依赖包 ```bash pip install -r requirements.txt -i https://pypi.douban.com/simple/ ``` - 编译安装[`ctc_decoders`](https://github.com/Slyne/ctc_decoder) ```bash git clone https://github.com/Slyne/ctc_decoder.git apt-get update apt-get install swig apt-get install python3-dev cd ctc_decoder/swig && bash setup.sh ``` 3. 下载预训练onnx模型到`pretrain_model\20211025_conformer_exp`下, - 下载链接:[Google Drive](https://drive.google.com/drive/folders/1Jv9pi44McsGfpFrK9R8zm9ZJuVzlP-uL?usp=sharing) - 最终结构目录如下,请自行比对: ```text . ├── pretrain_model │ └── 20211025_conformer_exp │ ├── decoder.onnx │ ├── encoder.onnx │ ├── test.yaml │ └── words.txt ├── README.md ├── requirements.txt ├── test_data │ └── test.wav ├── test_demo.py └── wenet ├── __init__.py ├── kaldifeat │ ├── feature.py │ ├── __init__.py │ ├── ivector.py │ ├── LICENSE │ └── README.md ├── utils.py └── wenet_infer.py ``` 4. 运行`python test_demo.py` 5. 运行结果如下: ```text test_data/test.wav 甚至出现交易几乎停滞的情况 0.8272988796234131s ``` #### 模型转onnx代码 - 原始的Wenet模型下载路径:[20211025_conformer_exp](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/aishell/20211025_conformer_exp.tar.gz) - 训练该模型使用的配置为:[train_conformer.yaml](https://github.com/wenet-e2e/wenet/blob/a92952827c/examples/aishell/s0/conf/train_conformer.yaml) ```bash # 运行环境:python3.7 torch1.10 1个GPU 16CPU 内存32G root_dir="examples/mix_data/exp/conformer/2022-04-07-05-37-18" config_path="${root_dir}/train.yaml" cmvn_file="${root_dir}/global_cmvn" checkpoint_path="${root_dir}/4.pt" dir_name=${checkpoint_path##*/} dir_name=${dir_name%.*} out_onnx_dir="export_onnx/mix_data/${dir_name}" python wenet/bin/export_onnx.py --config ${config_path} \ --checkpoint ${checkpoint_path} \ --cmvn_file ${cmvn_file} \ --output_onnx_dir ${out_onnx_dir} ```