# -*- encoding: utf-8 -*- # @Author: SWHL # @Contact: liekkaskono@163.com import traceback from pathlib import Path from typing import List, Union, Tuple import librosa import numpy as np from .utils import (CharTokenizer, Hypothesis, ONNXRuntimeError, OrtInferSession, TokenIDConverter, WavFrontend, get_logger, read_yaml) logging = get_logger() class RapidParaformer(): def __init__(self, config_path: Union[str, Path]) -> None: if not Path(config_path).exists(): raise FileNotFoundError(f'{config_path} does not exist.') config = read_yaml(config_path) self.converter = TokenIDConverter(**config['TokenIDConverter']) self.tokenizer = CharTokenizer(**config['CharTokenizer']) self.frontend = WavFrontend( cmvn_file=config['WavFrontend']['cmvn_file'], **config['WavFrontend']['frontend_conf'] ) self.ort_infer = OrtInferSession(config['Model']) self.batch_size = config['Model']['batch_size'] def __call__(self, wav_content: Union[str, np.ndarray, List[str]]) -> List: waveform_list = self.load_data(wav_content) waveform_nums = len(waveform_list) asr_res = [] for beg_idx in range(0, waveform_nums, self.batch_size): end_idx = min(waveform_nums, beg_idx + self.batch_size) feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx]) try: am_scores, valid_token_lens = self.infer(feats, feats_len) except ONNXRuntimeError: logging.warning("input wav is silence or noise") preds = [] else: preds = self.decode(am_scores, valid_token_lens) asr_res.extend(preds) return asr_res def load_data(self, wav_content: Union[str, np.ndarray, List[str]]) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=None) return waveform[None, ...] if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError( f'The type of {wav_content} is not in [str, np.ndarray, list]') def extract_feat(self, waveform_list: List[np.ndarray] ) -> Tuple[np.ndarray, np.ndarray]: feats, feats_len = [], [] for waveform in waveform_list: speech, _ = self.frontend.fbank(waveform) feat, feat_len = self.frontend.lfr_cmvn(speech) feats.append(feat) feats_len.append(feat_len) feats = self.pad_feats(feats, np.max(feats_len)) feats_len = np.array(feats_len).astype(np.int32) return feats, feats_len @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, 'constant', constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: np.ndarray, feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: am_scores, token_nums = self.ort_infer([feats, feats_len]) return am_scores, token_nums def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]: return [self.decode_one(am_score, token_num) for am_score, token_num in zip(am_scores, token_nums)] def decode_one(self, am_score: np.ndarray, valid_token_num: int) -> List[str]: yseq = am_score.argmax(axis=-1) score = am_score.max(axis=-1) score = np.sum(score, axis=-1) # pad with mask tokens to ensure compatibility with sos/eos tokens # asr_model.sos:1 asr_model.eos:2 yseq = np.array([1] + yseq.tolist() + [2]) hyp = Hypothesis(yseq=yseq, score=score) # remove sos/eos and get results last_pos = -1 token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x not in (0, 2), token_int)) # Change integer-ids to tokens token = self.converter.ids2tokens(token_int) text = self.tokenizer.tokens2text(token) return text[:valid_token_num-1] if __name__ == '__main__': project_dir = Path(__file__).resolve().parent.parent cfg_path = project_dir / 'resources' / 'config.yaml' paraformer = RapidParaformer(cfg_path) wav_file = '0478_00017.wav' for i in range(1000): result = paraformer(wav_file) print(result)