Commit 527887fc authored by mayong's avatar mayong
Browse files

update files.

parent 8bce857d
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "onnxruntime_c_api.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \param use_arena zero: false. non-zero: true.
*/
ORT_EXPORT
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_CPU, _In_ OrtSessionOptions* options, int use_arena)
ORT_ALL_ARGS_NONNULL;
#ifdef __cplusplus
}
#endif
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// See docs\c_cxx\README.md on generating the Doxygen documentation from this file
/** \mainpage C & C++ APIs
*
* <h1>C</h1>
*
* ::OrtApi - Click here to go to the structure with all C API functions.
*
* <h1>C++</h1>
*
* ::Ort - Click here to go to the namespace holding all of the C++ wrapper classes
*
* It is a set of header only wrapper classes around the C API. The goal is to turn the C style return value error codes into C++ exceptions, and to
* automate memory management through standard C++ RAII principles.
*
* \addtogroup Global
* ONNX Runtime C API
* @{
*/
#pragma once
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
/** \brief The API version defined in this header
*
* This value is used by some API functions to behave as this version of the header expects.
*/
#define ORT_API_VERSION 14
#ifdef __cplusplus
extern "C" {
#endif
//! @}
// SAL2 Definitions
#ifndef _WIN32
#define _In_
#define _In_z_
#define _In_opt_
#define _In_opt_z_
#define _Out_
#define _Outptr_
#define _Out_opt_
#define _Inout_
#define _Inout_opt_
#define _Frees_ptr_opt_
#define _Ret_maybenull_
#define _Ret_notnull_
#define _Check_return_
#define _Outptr_result_maybenull_
#define _In_reads_(X)
#define _Inout_updates_all_(X)
#define _Out_writes_bytes_all_(X)
#define _Out_writes_all_(X)
#define _Success_(X)
#define _Outptr_result_buffer_maybenull_(X)
#define ORT_ALL_ARGS_NONNULL __attribute__((nonnull))
#else
#include <specstrings.h>
#define ORT_ALL_ARGS_NONNULL
#endif
#ifdef _WIN32
// Define ORT_DLL_IMPORT if your program is dynamically linked to Ort.
// dllexport is not used, we use a .def file.
#ifdef ORT_DLL_IMPORT
#define ORT_EXPORT __declspec(dllimport)
#else
#define ORT_EXPORT
#endif
#define ORT_API_CALL _stdcall
#define ORT_MUST_USE_RESULT
#define ORTCHAR_T wchar_t
#else
// To make symbols visible on macOS/iOS
#ifdef __APPLE__
#define ORT_EXPORT __attribute__((visibility("default")))
#else
#define ORT_EXPORT
#endif
#define ORT_API_CALL
#define ORT_MUST_USE_RESULT __attribute__((warn_unused_result))
#define ORTCHAR_T char
#endif
#ifndef ORT_TSTR
#ifdef _WIN32
#define ORT_TSTR(X) L##X
#else
#define ORT_TSTR(X) X
#endif
#endif
// Any pointer marked with _In_ or _Out_, cannot be NULL.
// Windows users should use unicode paths when possible to bypass the MAX_PATH limitation
// Every pointer marked with _In_ or _Out_, cannot be NULL. Caller should ensure that.
// for ReleaseXXX(...) functions, they can accept NULL pointer.
#ifdef __cplusplus
// For any compiler with C++11 support, MSVC 2015 and greater, or Clang version supporting noexcept.
// Such complex condition is needed because compilers set __cplusplus value differently.
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if ((__cplusplus >= 201103L) || (_MSC_VER >= 1900) || (defined(__has_feature) && __has_feature(cxx_noexcept)))
#define NO_EXCEPTION noexcept
#else
#define NO_EXCEPTION throw()
#endif
#else
#define NO_EXCEPTION
#endif
// __VA_ARGS__ on Windows and Linux are different
#define ORT_API(RETURN_TYPE, NAME, ...) RETURN_TYPE ORT_API_CALL NAME(__VA_ARGS__) NO_EXCEPTION
#define ORT_API_STATUS(NAME, ...) \
_Success_(return == 0) _Check_return_ _Ret_maybenull_ OrtStatusPtr ORT_API_CALL NAME(__VA_ARGS__) \
NO_EXCEPTION ORT_MUST_USE_RESULT
// XXX: Unfortunately, SAL annotations are known to not work with function pointers
#define ORT_API2_STATUS(NAME, ...) \
_Check_return_ _Ret_maybenull_ OrtStatusPtr(ORT_API_CALL* NAME)(__VA_ARGS__) NO_EXCEPTION ORT_MUST_USE_RESULT
// Used in *.cc files. Almost as same as ORT_API_STATUS, except without ORT_MUST_USE_RESULT and ORT_EXPORT
#define ORT_API_STATUS_IMPL(NAME, ...) \
_Success_(return == 0) _Check_return_ _Ret_maybenull_ OrtStatusPtr ORT_API_CALL NAME(__VA_ARGS__) NO_EXCEPTION
#define ORT_CLASS_RELEASE(X) void(ORT_API_CALL * Release##X)(_Frees_ptr_opt_ Ort##X * input)
#ifdef __DOXYGEN__
#undef ORT_API_STATUS
#define ORT_API_STATUS(NAME, ...) OrtStatus* NAME(__VA_ARGS__)
#undef ORT_API2_STATUS
#define ORT_API2_STATUS(NAME, ...) OrtStatus* NAME(__VA_ARGS__)
#undef ORT_CLASS_RELEASE
#define ORT_CLASS_RELEASE(X) void Release##X(Ort##X* input)
#undef NO_EXCEPTION
#define NO_EXCEPTION
#endif
/** \addtogroup Global
* ONNX Runtime C API
* @{
*/
/** Copied from TensorProto::DataType
* Currently, Ort doesn't support complex64, complex128
*/
typedef enum ONNXTensorElementDataType {
ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED,
ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, // maps to c type float
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, // maps to c type uint8_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8, // maps to c type int8_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16, // maps to c type uint16_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16, // maps to c type int16_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, // maps to c type int32_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64, // maps to c type int64_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING, // maps to c++ type std::string
ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL,
ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16,
ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE, // maps to c type double
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32, // maps to c type uint32_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64, // maps to c type uint64_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64, // complex with float32 real and imaginary components
ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128, // complex with float64 real and imaginary components
ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16 // Non-IEEE floating-point format based on IEEE754 single-precision
} ONNXTensorElementDataType;
// Synced with onnx TypeProto oneof
typedef enum ONNXType {
ONNX_TYPE_UNKNOWN,
ONNX_TYPE_TENSOR,
ONNX_TYPE_SEQUENCE,
ONNX_TYPE_MAP,
ONNX_TYPE_OPAQUE,
ONNX_TYPE_SPARSETENSOR,
ONNX_TYPE_OPTIONAL
} ONNXType;
// These types are synced with internal
// SparseFormatFlags
typedef enum OrtSparseFormat {
ORT_SPARSE_UNDEFINED = 0,
ORT_SPARSE_COO = 0x1,
ORT_SPARSE_CSRC = 0x2,
ORT_SPARSE_BLOCK_SPARSE = 0x4
} OrtSparseFormat;
// Enum allows to query sparse tensor indices
enum OrtSparseIndicesFormat {
ORT_SPARSE_COO_INDICES,
ORT_SPARSE_CSR_INNER_INDICES,
ORT_SPARSE_CSR_OUTER_INDICES,
ORT_SPARSE_BLOCK_SPARSE_INDICES
};
/** \brief Logging severity levels
*
* In typical API usage, specifying a logging severity level specifies the minimum severity of log messages to show.
*/
typedef enum OrtLoggingLevel {
ORT_LOGGING_LEVEL_VERBOSE, ///< Verbose informational messages (least severe).
ORT_LOGGING_LEVEL_INFO, ///< Informational messages.
ORT_LOGGING_LEVEL_WARNING, ///< Warning messages.
ORT_LOGGING_LEVEL_ERROR, ///< Error messages.
ORT_LOGGING_LEVEL_FATAL, ///< Fatal error messages (most severe).
} OrtLoggingLevel;
typedef enum OrtErrorCode {
ORT_OK,
ORT_FAIL,
ORT_INVALID_ARGUMENT,
ORT_NO_SUCHFILE,
ORT_NO_MODEL,
ORT_ENGINE_ERROR,
ORT_RUNTIME_EXCEPTION,
ORT_INVALID_PROTOBUF,
ORT_MODEL_LOADED,
ORT_NOT_IMPLEMENTED,
ORT_INVALID_GRAPH,
ORT_EP_FAIL,
} OrtErrorCode;
typedef enum OrtOpAttrType {
ORT_OP_ATTR_UNDEFINED = 0,
ORT_OP_ATTR_INT,
ORT_OP_ATTR_INTS,
ORT_OP_ATTR_FLOAT,
ORT_OP_ATTR_FLOATS,
ORT_OP_ATTR_STRING,
ORT_OP_ATTR_STRINGS,
} OrtOpAttrType;
//! @}
#define ORT_RUNTIME_CLASS(X) \
struct Ort##X; \
typedef struct Ort##X Ort##X;
/** \addtogroup Global
* ONNX Runtime C API
* @{
*/
// The actual types defined have an Ort prefix
ORT_RUNTIME_CLASS(Env);
ORT_RUNTIME_CLASS(Status); // nullptr for Status* indicates success
ORT_RUNTIME_CLASS(MemoryInfo);
ORT_RUNTIME_CLASS(IoBinding);
ORT_RUNTIME_CLASS(Session); // Don't call ReleaseSession from Dllmain (because session owns a thread pool)
ORT_RUNTIME_CLASS(Value);
ORT_RUNTIME_CLASS(RunOptions);
ORT_RUNTIME_CLASS(TypeInfo);
ORT_RUNTIME_CLASS(TensorTypeAndShapeInfo);
ORT_RUNTIME_CLASS(SessionOptions);
ORT_RUNTIME_CLASS(CustomOpDomain);
ORT_RUNTIME_CLASS(MapTypeInfo);
ORT_RUNTIME_CLASS(SequenceTypeInfo);
ORT_RUNTIME_CLASS(ModelMetadata);
ORT_RUNTIME_CLASS(ThreadPoolParams);
ORT_RUNTIME_CLASS(ThreadingOptions);
ORT_RUNTIME_CLASS(ArenaCfg);
ORT_RUNTIME_CLASS(PrepackedWeightsContainer);
ORT_RUNTIME_CLASS(TensorRTProviderOptionsV2);
ORT_RUNTIME_CLASS(CUDAProviderOptionsV2);
ORT_RUNTIME_CLASS(CANNProviderOptions);
ORT_RUNTIME_CLASS(Op);
ORT_RUNTIME_CLASS(OpAttr);
#ifdef _WIN32
typedef _Return_type_success_(return == 0) OrtStatus* OrtStatusPtr;
#else
typedef OrtStatus* OrtStatusPtr;
#endif
/** \brief Memory allocation interface
*
* Structure of function pointers that defines a memory allocator. This can be created and filled in by the user for custom allocators.
*
* When an allocator is passed to any function, be sure that the allocator object is not destroyed until the last allocated object using it is freed.
*/
typedef struct OrtAllocator {
uint32_t version; ///< Must be initialized to ORT_API_VERSION
void*(ORT_API_CALL* Alloc)(struct OrtAllocator* this_, size_t size); ///< Returns a pointer to an allocated block of `size` bytes
void(ORT_API_CALL* Free)(struct OrtAllocator* this_, void* p); ///< Free a block of memory previously allocated with OrtAllocator::Alloc
const struct OrtMemoryInfo*(ORT_API_CALL* Info)(const struct OrtAllocator* this_); ///< Return a pointer to an ::OrtMemoryInfo that describes this allocator
} OrtAllocator;
typedef void(ORT_API_CALL* OrtLoggingFunction)(
void* param, OrtLoggingLevel severity, const char* category, const char* logid, const char* code_location,
const char* message);
/** \brief Graph optimization level
*
* Refer to https://www.onnxruntime.ai/docs/resources/graph-optimizations.html
* for an in-depth understanding of Graph Optimizations
*/
typedef enum GraphOptimizationLevel {
ORT_DISABLE_ALL = 0,
ORT_ENABLE_BASIC = 1,
ORT_ENABLE_EXTENDED = 2,
ORT_ENABLE_ALL = 99
} GraphOptimizationLevel;
typedef enum ExecutionMode {
ORT_SEQUENTIAL = 0,
ORT_PARALLEL = 1,
} ExecutionMode;
/** \brief Language projection identifiers
* /see OrtApi::SetLanguageProjection
*/
typedef enum OrtLanguageProjection {
ORT_PROJECTION_C = 0,
ORT_PROJECTION_CPLUSPLUS = 1,
ORT_PROJECTION_CSHARP = 2,
ORT_PROJECTION_PYTHON = 3,
ORT_PROJECTION_JAVA = 4,
ORT_PROJECTION_WINML = 5,
ORT_PROJECTION_NODEJS = 6,
} OrtLanguageProjection;
struct OrtKernelInfo;
typedef struct OrtKernelInfo OrtKernelInfo;
struct OrtKernelContext;
typedef struct OrtKernelContext OrtKernelContext;
struct OrtCustomOp;
typedef struct OrtCustomOp OrtCustomOp;
typedef enum OrtAllocatorType {
OrtInvalidAllocator = -1,
OrtDeviceAllocator = 0,
OrtArenaAllocator = 1
} OrtAllocatorType;
/** \brief Memory types for allocated memory, execution provider specific types should be extended in each provider.
*/
// Whenever this struct is updated, please also update the MakeKey function in onnxruntime / core / framework / execution_provider.cc
typedef enum OrtMemType {
OrtMemTypeCPUInput = -2, ///< Any CPU memory used by non-CPU execution provider
OrtMemTypeCPUOutput = -1, ///< CPU accessible memory outputted by non-CPU execution provider, i.e. CUDA_PINNED
OrtMemTypeCPU = OrtMemTypeCPUOutput, ///< Temporary CPU accessible memory allocated by non-CPU execution provider, i.e. CUDA_PINNED
OrtMemTypeDefault = 0, ///< The default allocator for execution provider
} OrtMemType;
/** \brief This mimics OrtDevice type constants so they can be returned in the API
*/
typedef enum OrtMemoryInfoDeviceType {
OrtMemoryInfoDeviceType_CPU = 0,
OrtMemoryInfoDeviceType_GPU = 1,
OrtMemoryInfoDeviceType_FPGA = 2
} OrtMemoryInfoDeviceType;
/** \brief Algorithm to use for cuDNN Convolution Op
*/
typedef enum OrtCudnnConvAlgoSearch {
OrtCudnnConvAlgoSearchExhaustive, // expensive exhaustive benchmarking using cudnnFindConvolutionForwardAlgorithmEx
OrtCudnnConvAlgoSearchHeuristic, // lightweight heuristic based search using cudnnGetConvolutionForwardAlgorithm_v7
OrtCudnnConvAlgoSearchDefault, // default algorithm using CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
} OrtCudnnConvAlgoSearch;
/** \brief CUDA Provider Options
*
* \see OrtApi::SessionOptionsAppendExecutionProvider_CUDA
*/
typedef struct OrtCUDAProviderOptions {
#ifdef __cplusplus
OrtCUDAProviderOptions()
: device_id{},
cudnn_conv_algo_search{OrtCudnnConvAlgoSearchExhaustive},
gpu_mem_limit{SIZE_MAX},
arena_extend_strategy{},
do_copy_in_default_stream{1},
has_user_compute_stream{},
user_compute_stream{},
default_memory_arena_cfg{},
tunable_op_enabled{false} {}
#endif
/** \brief CUDA device Id
* Defaults to 0.
*/
int device_id;
/** \brief CUDA Convolution algorithm search configuration.
* See enum OrtCudnnConvAlgoSearch for more details.
* Defaults to OrtCudnnConvAlgoSearchExhaustive.
*/
OrtCudnnConvAlgoSearch cudnn_conv_algo_search;
/** \brief CUDA memory limit (To use all possible memory pass in maximum size_t)
* Defaults to SIZE_MAX.
* \note If a ::OrtArenaCfg has been applied, it will override this field
*/
size_t gpu_mem_limit;
/** \brief Strategy used to grow the memory arena
* 0 = kNextPowerOfTwo<br>
* 1 = kSameAsRequested<br>
* Defaults to 0.
* \note If a ::OrtArenaCfg has been applied, it will override this field
*/
int arena_extend_strategy;
/** \brief Flag indicating if copying needs to take place on the same stream as the compute stream in the CUDA EP
* 0 = Use separate streams for copying and compute.
* 1 = Use the same stream for copying and compute.
* Defaults to 1.
* WARNING: Setting this to 0 may result in data races for some models.
* Please see issue #4829 for more details.
*/
int do_copy_in_default_stream;
/** \brief Flag indicating if there is a user provided compute stream
* Defaults to 0.
*/
int has_user_compute_stream;
/** \brief User provided compute stream.
* If provided, please set `has_user_compute_stream` to 1.
*/
void* user_compute_stream;
/** \brief CUDA memory arena configuration parameters
*/
OrtArenaCfg* default_memory_arena_cfg;
/** \brief Enable TunableOp.
* Set it to 1 to enable TunableOp. Otherwise, it is disabled by default.
* This option can be superseded by environment variable ORT_CUDA_TUNABLE_OP_ENABLED.
*/
int tunable_op_enabled;
} OrtCUDAProviderOptions;
/** \brief ROCM Provider Options
*
* \see OrtApi::SessionOptionsAppendExecutionProvider_ROCM
*/
typedef struct OrtROCMProviderOptions {
#ifdef __cplusplus
OrtROCMProviderOptions()
: device_id{},
miopen_conv_exhaustive_search{0},
gpu_mem_limit{SIZE_MAX},
arena_extend_strategy{},
do_copy_in_default_stream{1},
has_user_compute_stream{},
user_compute_stream{},
default_memory_arena_cfg{},
tunable_op_enabled{false} {}
#endif
/** \brief ROCM device Id
* Defaults to 0.
*/
int device_id;
/** \brief ROCM MIOpen Convolution algorithm exaustive search option.
* Defaults to 0 (false).
*/
int miopen_conv_exhaustive_search;
/** \brief ROCM memory limit (To use all possible memory pass in maximum size_t)
* Defaults to SIZE_MAX.
* \note If a ::OrtArenaCfg has been applied, it will override this field
*/
size_t gpu_mem_limit;
/** \brief Strategy used to grow the memory arena
* 0 = kNextPowerOfTwo<br>
* 1 = kSameAsRequested<br>
* Defaults to 0.
* \note If a ::OrtArenaCfg has been applied, it will override this field
*/
int arena_extend_strategy;
/** \brief Flag indicating if copying needs to take place on the same stream as the compute stream in the ROCM EP
* 0 = Use separate streams for copying and compute.
* 1 = Use the same stream for copying and compute.
* Defaults to 1.
* WARNING: Setting this to 0 may result in data races for some models.
* Please see issue #4829 for more details.
*/
int do_copy_in_default_stream;
/** \brief Flag indicating if there is a user provided compute stream
* Defaults to 0.
*/
int has_user_compute_stream;
/** \brief User provided compute stream.
* If provided, please set `has_user_compute_stream` to 1.
*/
void* user_compute_stream;
/** \brief ROCM memory arena configuration parameters
*/
OrtArenaCfg* default_memory_arena_cfg;
/** \brief Enable TunableOp.
* Set it to 1 to enable TunableOp. Otherwise, it is disabled by default.
* This option can be superseded by environment variable ORT_ROCM_TUNABLE_OP_ENABLED.
*/
int tunable_op_enabled;
} OrtROCMProviderOptions;
/** \brief TensorRT Provider Options
*
* \see OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
*/
typedef struct OrtTensorRTProviderOptions {
int device_id; ///< CUDA device id (0 = default device)
int has_user_compute_stream; // indicator of user specified CUDA compute stream.
void* user_compute_stream; // user specified CUDA compute stream.
int trt_max_partition_iterations; // maximum iterations for TensorRT parser to get capability
int trt_min_subgraph_size; // minimum size of TensorRT subgraphs
size_t trt_max_workspace_size; // maximum workspace size for TensorRT.
int trt_fp16_enable; // enable TensorRT FP16 precision. Default 0 = false, nonzero = true
int trt_int8_enable; // enable TensorRT INT8 precision. Default 0 = false, nonzero = true
const char* trt_int8_calibration_table_name; // TensorRT INT8 calibration table name.
int trt_int8_use_native_calibration_table; // use native TensorRT generated calibration table. Default 0 = false, nonzero = true
int trt_dla_enable; // enable DLA. Default 0 = false, nonzero = true
int trt_dla_core; // DLA core number. Default 0
int trt_dump_subgraphs; // dump TRT subgraph. Default 0 = false, nonzero = true
int trt_engine_cache_enable; // enable engine caching. Default 0 = false, nonzero = true
const char* trt_engine_cache_path; // specify engine cache path
int trt_engine_decryption_enable; // enable engine decryption. Default 0 = false, nonzero = true
const char* trt_engine_decryption_lib_path; // specify engine decryption library path
int trt_force_sequential_engine_build; // force building TensorRT engine sequentially. Default 0 = false, nonzero = true
// This is the legacy struct and don't add new fields here.
// For new field that can be represented by string, please add it in include/onnxruntime/core/providers/tensorrt/tensorrt_provider_options.h
// For non-string field, need to create a new separate api to handle it.
} OrtTensorRTProviderOptions;
/** \brief MIGraphX Provider Options
*
* \see OrtApi::SessionOptionsAppendExecutionProvider_MIGraphX
*/
typedef struct OrtMIGraphXProviderOptions {
int device_id; // hip device id.
int migraphx_fp16_enable; // enable MIGraphX FP16 precision. Default 0 = false, nonzero = true
int migraphx_int8_enable; // enable MIGraphX INT8 precision. Default 0 = false, nonzero = true
} OrtMIGraphXProviderOptions;
/** \brief OpenVINO Provider Options
*
* \see OrtApi::SessionOptionsAppendExecutionProvider_OpenVINO
*/
typedef struct OrtOpenVINOProviderOptions {
#ifdef __cplusplus
OrtOpenVINOProviderOptions() : device_type{}, enable_vpu_fast_compile{}, device_id{},
num_of_threads{}, cache_dir{},
context{}, enable_opencl_throttling{}, enable_dynamic_shapes{} {}
#endif
/** \brief Device type string
*
* Valid settings are one of: "CPU_FP32", "CPU_FP16", "GPU_FP32", "GPU_FP16", "MYRIAD_FP16", "VAD-M_FP16" or "VAD-F_FP32"
*/
const char* device_type;
unsigned char enable_vpu_fast_compile; ///< 0 = disabled, nonzero = enabled
const char* device_id;
size_t num_of_threads; ///< 0 = Use default number of threads
const char* cache_dir; // path is set to empty by default
void* context;
unsigned char enable_opencl_throttling; ///< 0 = disabled, nonzero = enabled
unsigned char enable_dynamic_shapes; ///< 0 = disabled, nonzero = enabled
} OrtOpenVINOProviderOptions;
struct OrtApi;
typedef struct OrtApi OrtApi;
struct OrtTrainingApi;
typedef struct OrtTrainingApi OrtTrainingApi;
/** \brief The helper interface to get the right version of OrtApi
*
* Get a pointer to this structure through ::OrtGetApiBase
*/
struct OrtApiBase {
/** \brief Get a pointer to the requested version of the ::OrtApi
*
* \param[in] version Must be ::ORT_API_VERSION
* \return The ::OrtApi for the version requested, nullptr will be returned if this version is unsupported, for example when using a runtime
* older than the version created with this header file.
*/
const OrtApi*(ORT_API_CALL* GetApi)(uint32_t version)NO_EXCEPTION;
const char*(ORT_API_CALL* GetVersionString)(void)NO_EXCEPTION; ///< Returns a null terminated string of the version of the Onnxruntime library (eg: "1.8.1")
};
typedef struct OrtApiBase OrtApiBase;
/** \brief The Onnxruntime library's entry point to access the C API
*
* Call this to get the a pointer to an ::OrtApiBase
*/
ORT_EXPORT const OrtApiBase* ORT_API_CALL OrtGetApiBase(void) NO_EXCEPTION;
/** \brief Thread work loop function
*
* Onnxruntime will provide the working loop on custom thread creation
* Argument is an onnxruntime built-in type which will be provided when thread pool calls OrtCustomCreateThreadFn
*/
typedef void (*OrtThreadWorkerFn)(void* ort_worker_fn_param);
typedef const struct OrtCustomHandleType {
char __place_holder;
}* OrtCustomThreadHandle;
/** \brief Ort custom thread creation function
*
* The function should return a thread handle to be used in onnxruntime thread pools
* Onnxruntime will throw exception on return value of nullptr or 0, indicating that the function failed to create a thread
*/
typedef OrtCustomThreadHandle (*OrtCustomCreateThreadFn)(void* ort_custom_thread_creation_options, OrtThreadWorkerFn ort_thread_worker_fn, void* ort_worker_fn_param);
/** \brief Custom thread join function
*
* Onnxruntime thread pool destructor will call the function to join a custom thread.
* Argument ort_custom_thread_handle is the value returned by OrtCustomCreateThreadFn
*/
typedef void (*OrtCustomJoinThreadFn)(OrtCustomThreadHandle ort_custom_thread_handle);
typedef OrtStatus*(ORT_API_CALL* RegisterCustomOpsFn)(OrtSessionOptions* options, const OrtApiBase* api);
/** \brief The C API
*
* All C API functions are defined inside this structure as pointers to functions.
* Call OrtApiBase::GetApi to get a pointer to it
*
* \nosubgrouping
*/
struct OrtApi {
/// \name OrtStatus
/// @{
/**
* \brief Create an OrtStatus from a null terminated string
*
* \param[in] code
* \param[in] msg A null-terminated string. Its contents will be copied.
* \return A new OrtStatus object, must be destroyed with OrtApi::ReleaseStatus
*/
OrtStatus*(ORT_API_CALL* CreateStatus)(OrtErrorCode code, _In_ const char* msg)NO_EXCEPTION ORT_ALL_ARGS_NONNULL;
/** \brief Get OrtErrorCode from OrtStatus
*
* \param[in] status
* \return OrtErrorCode that \p status was created with
*/
OrtErrorCode(ORT_API_CALL* GetErrorCode)(_In_ const OrtStatus* status) NO_EXCEPTION ORT_ALL_ARGS_NONNULL;
/** \brief Get error string from OrtStatus
*
* \param[in] status
* \return The error message inside the `status`. Do not free the returned value.
*/
const char*(ORT_API_CALL* GetErrorMessage)(_In_ const OrtStatus* status)NO_EXCEPTION ORT_ALL_ARGS_NONNULL;
/// @}
/// \name OrtEnv
/// @{
/** \brief Create an OrtEnv
*
* \param[in] log_severity_level The log severity level.
* \param[in] logid The log identifier.
* \param[out] out Returned newly created OrtEnv. Must be freed with OrtApi::ReleaseEnv
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateEnv, OrtLoggingLevel log_severity_level, _In_ const char* logid, _Outptr_ OrtEnv** out);
/** \brief Create an OrtEnv
*
* \param[in] logging_function A pointer to a logging function.
* \param[in] logger_param A pointer to arbitrary data passed as the ::OrtLoggingFunction `param` parameter to
* `logging_function`.
* \param[in] log_severity_level The log severity level.
* \param[in] logid The log identifier.
* \param[out] out Returned newly created OrtEnv. Must be freed with OrtApi::ReleaseEnv
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateEnvWithCustomLogger, OrtLoggingFunction logging_function, _In_opt_ void* logger_param,
OrtLoggingLevel log_severity_level, _In_ const char* logid, _Outptr_ OrtEnv** out);
/** \brief Enable Telemetry
*
* \note Telemetry events are on by default since they are lightweight
* \param[in] env
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(EnableTelemetryEvents, _In_ const OrtEnv* env);
/** \brief Disable Telemetry
*
* \see OrtApi::EnableTelemetryEvents
* \param[in] env
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(DisableTelemetryEvents, _In_ const OrtEnv* env);
/// @}
/// \name OrtSession
/// @{
/** \brief Create an OrtSession from a model file
*
* \param[in] env
* \param[in] model_path
* \param[in] options
* \param[out] out Returned newly created OrtSession. Must be freed with OrtApi::ReleaseSession
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
// TODO: document the path separator convention? '/' vs '\'
// TODO: should specify the access characteristics of model_path. Is this read only during the
// execution of CreateSession, or does the OrtSession retain a handle to the file/directory
// and continue to access throughout the OrtSession lifetime?
// What sort of access is needed to model_path : read or read/write?
ORT_API2_STATUS(CreateSession, _In_ const OrtEnv* env, _In_ const ORTCHAR_T* model_path,
_In_ const OrtSessionOptions* options, _Outptr_ OrtSession** out);
/** \brief Create an OrtSession from memory
*
* \param[in] env
* \param[in] model_data
* \param[in] model_data_length
* \param[in] options
* \param[out] out Returned newly created OrtSession. Must be freed with OrtApi::ReleaseSession
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSessionFromArray, _In_ const OrtEnv* env, _In_ const void* model_data, size_t model_data_length,
_In_ const OrtSessionOptions* options, _Outptr_ OrtSession** out);
/** \brief Run the model in an ::OrtSession
*
* Will not return until the model run has completed. Multiple threads might be used to run the model based on
* the options in the ::OrtSession and settings used when creating the ::OrtEnv
*
* \param[in] session
* \param[in] run_options If nullptr, will use a default ::OrtRunOptions
* \param[in] input_names Array of null terminated UTF8 encoded strings of the input names
* \param[in] inputs Array of ::OrtValue%s of the input values
* \param[in] input_len Number of elements in the input_names and inputs arrays
* \param[in] output_names Array of null terminated UTF8 encoded strings of the output names
* \param[in] output_names_len Number of elements in the output_names and outputs array
* \param[out] outputs Array of ::OrtValue%s that the outputs are stored in. This can also be
* an array of nullptr values, in this case ::OrtValue objects will be allocated and pointers
* to them will be set into the `outputs` array.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(Run, _Inout_ OrtSession* session, _In_opt_ const OrtRunOptions* run_options,
_In_reads_(input_len) const char* const* input_names,
_In_reads_(input_len) const OrtValue* const* inputs, size_t input_len,
_In_reads_(output_names_len) const char* const* output_names, size_t output_names_len,
_Inout_updates_all_(output_names_len) OrtValue** outputs);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Create an ::OrtSessionOptions object
*
* To use additional providers, you must build ORT with the extra providers enabled. Then call one of these
* functions to enable them in the session:<br>
* OrtSessionOptionsAppendExecutionProvider_CPU<br>
* OrtSessionOptionsAppendExecutionProvider_CUDA<br>
* OrtSessionOptionsAppendExecutionProvider_(remaining providers...)<br>
* The order they are called indicates the preference order as well. In other words call this method
* on your most preferred execution provider first followed by the less preferred ones.
* If none are called Ort will use its internal CPU execution provider.
*
* \param[out] options The newly created OrtSessionOptions. Must be freed with OrtApi::ReleaseSessionOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSessionOptions, _Outptr_ OrtSessionOptions** options);
/** \brief Set filepath to save optimized model after graph level transformations
*
* \param[in] options
* \param[in] optimized_model_filepath
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetOptimizedModelFilePath, _Inout_ OrtSessionOptions* options,
_In_ const ORTCHAR_T* optimized_model_filepath);
/** \brief Create a copy of an existing ::OrtSessionOptions
*
* \param[in] in_options OrtSessionOptions to copy
* \param[out] out_options Returned newly created ::OrtSessionOptions. Must be freed with OrtApi::ReleaseSessionOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CloneSessionOptions, _In_ const OrtSessionOptions* in_options,
_Outptr_ OrtSessionOptions** out_options);
/** \brief Set execution mode
*
* Controls whether you want to execute operators in your graph sequentially or in parallel. Usually when the model
* has many branches, setting this option to ExecutionMode.ORT_PARALLEL will give you better performance.
* See [docs/ONNX_Runtime_Perf_Tuning.md] for more details.
*
* \param[in] options
* \param[in] execution_mode
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetSessionExecutionMode, _Inout_ OrtSessionOptions* options, ExecutionMode execution_mode);
/** \brief Enable profiling for a session
*
* \param[in] options
* \param[in] profile_file_prefix
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(EnableProfiling, _Inout_ OrtSessionOptions* options, _In_ const ORTCHAR_T* profile_file_prefix);
/** \brief Disable profiling for a session
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(DisableProfiling, _Inout_ OrtSessionOptions* options);
/** \brief Enable the memory pattern optimization
*
* The idea is if the input shapes are the same, we could trace the internal memory allocation
* and generate a memory pattern for future request. So next time we could just do one allocation
* with a big chunk for all the internal memory allocation.
* \note Memory pattern optimization is only available when Sequential Execution mode is enabled (see OrtApi::SetSessionExecutionMode)
*
* \see OrtApi::DisableMemPattern
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(EnableMemPattern, _Inout_ OrtSessionOptions* options);
/** \brief Disable the memory pattern optimization
*
* \see OrtApi::EnableMemPattern
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(DisableMemPattern, _Inout_ OrtSessionOptions* options);
/** \brief Enable the memory arena on CPU
*
* Arena may pre-allocate memory for future usage.
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(EnableCpuMemArena, _Inout_ OrtSessionOptions* options);
/** \brief Disable the memory arena on CPU
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(DisableCpuMemArena, _Inout_ OrtSessionOptions* options);
/** \brief Set session log id
*
* \param[in] options
* \param[in] logid The log identifier.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetSessionLogId, _Inout_ OrtSessionOptions* options, const char* logid);
/** \brief Set session log verbosity level
*
* Applies to session load, initialization, etc
*
* \param[in] options
* \param[in] session_log_verbosity_level \snippet{doc} snippets.dox Log Verbosity Level
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetSessionLogVerbosityLevel, _Inout_ OrtSessionOptions* options, int session_log_verbosity_level);
/** \brief Set session log severity level
*
* \param[in] options
* \param[in] session_log_severity_level The log severity level (refer to ::OrtLoggingLevel for possible values).
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetSessionLogSeverityLevel, _Inout_ OrtSessionOptions* options, int session_log_severity_level);
/** \brief Set the optimization level to apply when loading a graph
*
* Please see https://www.onnxruntime.ai/docs/resources/graph-optimizations.html for an in-depth explanation
* \param[in,out] options The session options object
* \param[in] graph_optimization_level The optimization level
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetSessionGraphOptimizationLevel, _Inout_ OrtSessionOptions* options,
GraphOptimizationLevel graph_optimization_level);
/** \brief Sets the number of threads used to parallelize the execution within nodes
*
* When running a single node operation, ex. add, this sets the maximum number of threads to use.
*
* \note If built with OpenMP, this has no effect on the number of threads used. In this case
* use the OpenMP env variables to configure the number of intra op num threads.
*
* \param[in] options
* \param[in] intra_op_num_threads Number of threads to use<br>
* A value of 0 will use the default number of threads<br>
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetIntraOpNumThreads, _Inout_ OrtSessionOptions* options, int intra_op_num_threads);
/** \brief Sets the number of threads used to parallelize the execution of the graph
*
* If nodes can be run in parallel, this sets the maximum number of threads to use to run them in parallel.
*
* \note If sequential execution is enabled this value is ignored, it acts as if it was set to 1.
*
* \param[in] options
* \param[in] inter_op_num_threads Number of threads to use<br>
* A value of 0 will use the default number of threads<br>
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetInterOpNumThreads, _Inout_ OrtSessionOptions* options, int inter_op_num_threads);
/// @}
/// \name OrtCustomOpDomain
/// @{
/** \brief Create a custom op domain
*
* \param[in] domain
* \param[out] out Newly created domain. Must be freed with OrtApi::ReleaseCustomOpDomain
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateCustomOpDomain, _In_ const char* domain, _Outptr_ OrtCustomOpDomain** out);
/** \brief Add a custom op to a custom op domain
*
* \note The OrtCustomOp* pointer must remain valid until the ::OrtCustomOpDomain using it is released
*
* \param[in] custom_op_domain
* \param[in] op
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CustomOpDomain_Add, _Inout_ OrtCustomOpDomain* custom_op_domain, _In_ const OrtCustomOp* op);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Add custom op domain to a session options
*
* \note The OrtCustomOpDomain* must not be deleted until all sessions using it are released
*
* \param[in] options
* \param[in] custom_op_domain
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(AddCustomOpDomain, _Inout_ OrtSessionOptions* options, _In_ OrtCustomOpDomain* custom_op_domain);
/** \deprecated Use OrtApi::RegisterCustomOpsLibrary_V2.
*
* Registers custom ops from a shared library.
*
* Loads a shared library (dll on windows, so on linux, etc) named 'library_path' and looks for this entry point:
* OrtStatus* RegisterCustomOps(OrtSessionOptions * options, const OrtApiBase* api);
* It then passes in the provided session options to this function along with the api base.
* The handle to the loaded library is returned in library_handle. It can be freed by the caller after all sessions using the passed in
* session options are destroyed, or if an error occurs and it is non null.
*
* \param[in] options
* \param[in] library_path
* \param[out] library_handle OS specific handle to the loaded library (Use FreeLibrary on Windows, dlclose on Linux, etc.. to unload)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RegisterCustomOpsLibrary, _Inout_ OrtSessionOptions* options, _In_ const char* library_path, _Outptr_ void** library_handle);
/// @}
/// \name OrtSession
/// @{
/** \brief Get input count for a session
*
* This number must also match the number of inputs passed to OrtApi::Run
*
* \see OrtApi::SessionGetInputTypeInfo, OrtApi::SessionGetInputName, OrtApi::Session
*
* \param[in] session
* \param[out] out Number of inputs
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetInputCount, _In_ const OrtSession* session, _Out_ size_t* out);
/** \brief Get output count for a session
*
* This number must also match the number of outputs returned by OrtApi::Run
*
* \see OrtApi::SessionGetOutputTypeInfo, OrtApi::SessionGetOutputName, OrtApi::Session
*
* \param[in] session
* \param[out] out Number of outputs
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOutputCount, _In_ const OrtSession* session, _Out_ size_t* out);
/** \brief Get overridable initializer count
*
* \see OrtApi::SessionGetOverridableInitializerTypeInfo, OrtApi::SessionGetOverridableInitializerName
*
* \param[in] session
* \param[in] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOverridableInitializerCount, _In_ const OrtSession* session, _Out_ size_t* out);
/** \brief Get input type information
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetInputCount returns (exclusive)
* \param[out] type_info Must be freed with OrtApi::ReleaseTypeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetInputTypeInfo, _In_ const OrtSession* session, size_t index, _Outptr_ OrtTypeInfo** type_info);
/** \brief Get output type information
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetOutputCount returns (exclusive)
* \param[out] type_info Must be freed with OrtApi::ReleaseTypeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOutputTypeInfo, _In_ const OrtSession* session, size_t index, _Outptr_ OrtTypeInfo** type_info);
/** \brief Get overridable initializer type information
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetOverridableInitializerCount returns (exclusive)
* \param[out] type_info Must be freed with OrtApi::ReleaseTypeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOverridableInitializerTypeInfo, _In_ const OrtSession* session, size_t index, _Outptr_ OrtTypeInfo** type_info);
/** \brief Get input name
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetInputCount returns (exclusive)
* \param[in] allocator
* \param[out] value Set to a null terminated UTF-8 encoded string allocated using `allocator`. Must be freed using `allocator`.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetInputName, _In_ const OrtSession* session, size_t index, _Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/** \brief Get output name
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetOutputCount returns (exclusive)
* \param[in] allocator
* \param[out] value Set to a null terminated UTF-8 encoded string allocated using `allocator`. Must be freed using `allocator`.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOutputName, _In_ const OrtSession* session, size_t index, _Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/** \brief Get overridable initializer name
*
* \param[in] session
* \param[in] index Must be between 0 (inclusive) and what OrtApi::SessionGetOverridableInitializerCount returns (exclusive)
* \param[in] allocator
* \param[out] value Set to a null terminated UTF-8 encoded string allocated using `allocator`. Must be freed using `allocator`.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetOverridableInitializerName, _In_ const OrtSession* session, size_t index,
_Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/// @}
/// \name OrtRunOptions
/// @{
/** \brief Create an OrtRunOptions
*
* \param[out] out Returned newly created ::OrtRunOptions. Must be freed with OrtApi::ReleaseRunOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateRunOptions, _Outptr_ OrtRunOptions** out);
/** \brief Set per-run log verbosity level
*
* \see OrtApi::RunOptionsGetRunLogVerbosityLevel
*
* \param[in] options
* \param[in] log_verbosity_level \snippet{doc} snippets.dox Log Verbosity Level
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RunOptionsSetRunLogVerbosityLevel, _Inout_ OrtRunOptions* options, int log_verbosity_level);
/** \brief Set per-run log severity level
*
* \see OrtApi::RunOptionsGetRunLogSeverityLevel
*
* \param[in] options
* \param[in] log_severity_level The log severity level (refer to ::OrtLoggingLevel for possible values).
*/
ORT_API2_STATUS(RunOptionsSetRunLogSeverityLevel, _Inout_ OrtRunOptions* options, int log_severity_level);
/** \brief Set per-run tag
*
* This is used in a per-run log identifier.
*
* \see OrtApi::RunOptionsGetRunTag
*
* \param[in] options
* \param[in] run_tag The run tag.
*/
ORT_API2_STATUS(RunOptionsSetRunTag, _Inout_ OrtRunOptions* options, _In_ const char* run_tag);
/** \brief Get per-run log verbosity level
*
* \see OrtApi::RunOptionsSetRunLogVerbosityLevel
*
* \param[in] options
* \param[out] log_verbosity_level \snippet{doc} snippets.dox Log Verbosity Level
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RunOptionsGetRunLogVerbosityLevel, _In_ const OrtRunOptions* options,
_Out_ int* log_verbosity_level);
/** \brief Get per-run log severity level
*
* \see OrtApi::RunOptionsSetRunLogSeverityLevel
*
* \param[in] options
* \param[out] log_severity_level The log severity level (refer to ::OrtLoggingLevel for possible values).
*/
ORT_API2_STATUS(RunOptionsGetRunLogSeverityLevel, _In_ const OrtRunOptions* options, _Out_ int* log_severity_level);
/** \brief Get per-run tag
*
* This is used in a per-run log identifier.
*
* \see OrtApi::RunOptionsSetRunTag
*
* \param[in] options
* \param[out] run_tag The run tag.
* Do not free this value, it is owned by `options`. It will be invalidated if the run tag
* changes (i.e., with OrtApi::RunOptionsSetRunTag) or `options` is freed.
*/
ORT_API2_STATUS(RunOptionsGetRunTag, _In_ const OrtRunOptions* options, _Out_ const char** run_tag);
/** \brief Set terminate flag
*
* If a currently executing session needs to be force terminated, this can be called from another thread to force it to fail with an error.
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RunOptionsSetTerminate, _Inout_ OrtRunOptions* options);
/** \brief Clears the terminate flag
*
* Used so the OrtRunOptions instance can be used in a new OrtApi::Run call without it instantly terminating
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RunOptionsUnsetTerminate, _Inout_ OrtRunOptions* options);
/// @}
/// \name OrtValue
/// @{
/** \brief Create a tensor
*
* Create a tensor using a supplied ::OrtAllocator
*
* \param[in] allocator
* \param[in] shape Pointer to the tensor shape dimensions.
* \param[in] shape_len The number of tensor shape dimensions.
* \param[in] type
* \param[out] out Returns newly created ::OrtValue. Must be freed with OrtApi::ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateTensorAsOrtValue, _Inout_ OrtAllocator* allocator, _In_ const int64_t* shape, size_t shape_len,
ONNXTensorElementDataType type, _Outptr_ OrtValue** out);
/** \brief Create a tensor backed by a user supplied buffer
*
* Create a tensor with user's buffer. You can fill the buffer either before calling this function or after.
* p_data is owned by caller. ReleaseValue won't release p_data.
*
* \param[in] info Memory description of where the p_data buffer resides (CPU vs GPU etc).
* \param[in] p_data Pointer to the data buffer.
* \param[in] p_data_len The number of bytes in the data buffer.
* \param[in] shape Pointer to the tensor shape dimensions.
* \param[in] shape_len The number of tensor shape dimensions.
* \param[in] type The data type.
* \param[out] out Returns newly created ::OrtValue. Must be freed with OrtApi::ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateTensorWithDataAsOrtValue, _In_ const OrtMemoryInfo* info, _Inout_ void* p_data,
size_t p_data_len, _In_ const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type,
_Outptr_ OrtValue** out);
/** \brief Return if an ::OrtValue is a tensor type
*
* \param[in] value A tensor type (string tensors are not supported)
* \param[out] out Set to 1 iff ::OrtValue is a tensor, 0 otherwise
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(IsTensor, _In_ const OrtValue* value, _Out_ int* out);
/** \brief Get a pointer to the raw data inside a tensor
*
* Used to read/write/modify the internal tensor data directly.
* \note The returned pointer is valid until the \p value is destroyed.
*
* \param[in] value A tensor type (string tensors are not supported)
* \param[out] out Filled in with a pointer to the internal storage
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorMutableData, _In_ OrtValue* value, _Outptr_ void** out);
/** \brief Set all strings at once in a string tensor
*
* \param[in,out] value A tensor of type ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING
* \param[in] s An array of strings. Each string in this array must be null terminated.
* \param[in] s_len Count of strings in s (Must match the size of \p value's tensor shape)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(FillStringTensor, _Inout_ OrtValue* value, _In_ const char* const* s, size_t s_len);
/** \brief Get total byte length for all strings in a string tensor
*
* Typically used with OrtApi::GetStringTensorContent
*
* \param[in] value A tensor of type ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING
* \param[out] len Total byte length of all strings (does not include trailing nulls)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetStringTensorDataLength, _In_ const OrtValue* value, _Out_ size_t* len);
/** \brief Get all strings from a string tensor
*
* An example of the results:<br>
* Given \p value is a string tensor with the strings { "This" "is" "a" "test" }<br>
* \p s must have a size of 11 bytes<br>
* \p offsets must have 4 elements<br>
* After the call, these values will be filled in:<br>
* \p s will contain "Thisisatest"<br>
* \p offsets will contain { 0, 4, 6, 7 }<br>
* The length of the last string is just s_len - offsets[last]
*
* \param[in] value A tensor of type ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING
* \param[in] s Buffer to sequentially write all tensor strings to. Each string is NOT null-terminated.
* \param[in] s_len Number of bytes of buffer pointed to by \p s (Get it from OrtApi::GetStringTensorDataLength)
* \param[out] offsets Array of start offsets into the strings written to \p s
* \param[in] offsets_len Number of elements in offsets
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetStringTensorContent, _In_ const OrtValue* value, _Out_writes_bytes_all_(s_len) void* s,
size_t s_len, _Out_writes_all_(offsets_len) size_t* offsets, size_t offsets_len);
/// @}
/// \name OrtTypeInfo
/// @{
/** \brief Get ::OrtTensorTypeAndShapeInfo from an ::OrtTypeInfo
*
* \param[in] type_info
* \param[out] out Do not free this value, it will be valid until type_info is freed.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CastTypeInfoToTensorInfo, _In_ const OrtTypeInfo* type_info,
_Outptr_result_maybenull_ const OrtTensorTypeAndShapeInfo** out);
/** \brief Get ::ONNXType from ::OrtTypeInfo
*
* \param[in] type_info
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetOnnxTypeFromTypeInfo, _In_ const OrtTypeInfo* type_info, _Out_ enum ONNXType* out);
/// @}
/// \name OrtTensorTypeAndShapeInfo
/// @{
/** \brief Create an ::OrtTensorTypeAndShapeInfo object
*
* \param[out] out Returns newly created ::OrtTensorTypeAndShapeInfo. Must be freed with OrtApi::ReleaseTensorTypeAndShapeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateTensorTypeAndShapeInfo, _Outptr_ OrtTensorTypeAndShapeInfo** out);
/** \brief Set element type in ::OrtTensorTypeAndShapeInfo
*
* \param[in] info
* \param[in] type
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetTensorElementType, _Inout_ OrtTensorTypeAndShapeInfo* info, enum ONNXTensorElementDataType type);
/** \brief Set shape information in ::OrtTensorTypeAndShapeInfo
*
* \param[in] info
* \param[in] dim_values Array with `dim_count` elements. Can contain negative values.
* \param[in] dim_count Number of elements in `dim_values`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetDimensions, OrtTensorTypeAndShapeInfo* info, _In_ const int64_t* dim_values, size_t dim_count);
/** \brief Get element type in ::OrtTensorTypeAndShapeInfo
*
* \see OrtApi::SetTensorElementType
*
* \param[in] info
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorElementType, _In_ const OrtTensorTypeAndShapeInfo* info,
_Out_ enum ONNXTensorElementDataType* out);
/** \brief Get dimension count in ::OrtTensorTypeAndShapeInfo
*
* \see OrtApi::GetDimensions
*
* \param[in] info
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetDimensionsCount, _In_ const OrtTensorTypeAndShapeInfo* info, _Out_ size_t* out);
/** \brief Get dimensions in ::OrtTensorTypeAndShapeInfo
*
* \param[in] info
* \param[out] dim_values Array with `dim_values_length` elements. On return, filled with the dimensions stored in the ::OrtTensorTypeAndShapeInfo
* \param[in] dim_values_length Number of elements in `dim_values`. Use OrtApi::GetDimensionsCount to get this value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetDimensions, _In_ const OrtTensorTypeAndShapeInfo* info, _Out_ int64_t* dim_values,
size_t dim_values_length);
/** \brief Get symbolic dimension names in ::OrtTensorTypeAndShapeInfo
*
* \param[in] info
* \param[in] dim_params Array with `dim_params_length` elements. On return filled with pointers to null terminated strings of the dimension names
* \param[in] dim_params_length Number of elements in `dim_params`. Use OrtApi::GetDimensionsCount to get this value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSymbolicDimensions, _In_ const OrtTensorTypeAndShapeInfo* info,
_Out_writes_all_(dim_params_length) const char* dim_params[], size_t dim_params_length);
/** \brief Get total number of elements in a tensor shape from an ::OrtTensorTypeAndShapeInfo
*
* Return the number of elements specified by the tensor shape (all dimensions multiplied by each other).
* For 0 dimensions, 1 is returned. If any dimension is less than 0, the result is always -1.
*
* Examples:<br>
* [] = 1<br>
* [1,3,4] = 12<br>
* [2,0,4] = 0<br>
* [-1,3,4] = -1<br>
*
* \param[in] info
* \param[out] out Number of elements
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorShapeElementCount, _In_ const OrtTensorTypeAndShapeInfo* info, _Out_ size_t* out);
/// @}
/// \name OrtValue
/// @{
/** \brief Get type and shape information from a tensor ::OrtValue
*
* \param[in] value Must be a tensor (not a map/sequence/etc) or will return failure
* \param[out] out Newly created ::OrtTensorTypeAndShapeInfo. Must be freed with OrtApi::ReleaseTensorTypeAndShapeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorTypeAndShape, _In_ const OrtValue* value, _Outptr_ OrtTensorTypeAndShapeInfo** out);
/** \brief Get type information of an OrtValue
*
* \param[in] value
* \param[out] out Newly created ::OrtTypeInfo. Must be freed with OrtApi::ReleaseTypeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTypeInfo, _In_ const OrtValue* value, _Outptr_result_maybenull_ OrtTypeInfo** out);
/** \brief Get ONNXType of an ::OrtValue
*
* \param[in] value
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetValueType, _In_ const OrtValue* value, _Out_ enum ONNXType* out);
/// @}
/// \name OrtMemoryInfo
/// @{
/** \brief Create an ::OrtMemoryInfo
*
* \param[in] name
* \param[in] type
* \param[in] id
* \param[in] mem_type
* \param[out] out Newly created ::OrtMemoryInfo. Must be freed with OrtAPi::ReleaseMemoryInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateMemoryInfo, _In_ const char* name, enum OrtAllocatorType type, int id,
enum OrtMemType mem_type, _Outptr_ OrtMemoryInfo** out);
/** \brief Create an ::OrtMemoryInfo for CPU memory
*
* Special case version of OrtApi::CreateMemoryInfo for CPU based memory. Same as using OrtApi::CreateMemoryInfo with name = "Cpu" and id = 0.
*
* \param[in] type
* \param[in] mem_type
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateCpuMemoryInfo, enum OrtAllocatorType type, enum OrtMemType mem_type,
_Outptr_ OrtMemoryInfo** out);
/** \brief Compare ::OrtMemoryInfo objects for equality
*
* Compares all settings of each ::OrtMemoryInfo for equality
*
* \param[in] info1
* \param[in] info2
* \param[out] out Set to 0 if equal, -1 if not equal
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CompareMemoryInfo, _In_ const OrtMemoryInfo* info1, _In_ const OrtMemoryInfo* info2, _Out_ int* out);
/** \brief Get name from ::OrtMemoryInfo
*
* \param[in] ptr
* \param[out] out Writes null terminated string to this pointer. Do NOT free the returned pointer. It is valid for the lifetime of the ::OrtMemoryInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(MemoryInfoGetName, _In_ const OrtMemoryInfo* ptr, _Out_ const char** out);
/** \brief Get the id from ::OrtMemoryInfo
*/
ORT_API2_STATUS(MemoryInfoGetId, _In_ const OrtMemoryInfo* ptr, _Out_ int* out);
/** \brief Get the ::OrtMemType from ::OrtMemoryInfo
*/
ORT_API2_STATUS(MemoryInfoGetMemType, _In_ const OrtMemoryInfo* ptr, _Out_ OrtMemType* out);
/** \brief Get the ::OrtAllocatorType from ::OrtMemoryInfo
*/
ORT_API2_STATUS(MemoryInfoGetType, _In_ const OrtMemoryInfo* ptr, _Out_ OrtAllocatorType* out);
/// @}
/// \name OrtAllocator
/// @{
/// \brief Calls OrtAllocator::Alloc function
ORT_API2_STATUS(AllocatorAlloc, _Inout_ OrtAllocator* ort_allocator, size_t size, _Outptr_ void** out);
/// \brief Calls OrtAllocator::Free function
ORT_API2_STATUS(AllocatorFree, _Inout_ OrtAllocator* ort_allocator, void* p);
/// \brief Calls OrtAllocator::Info function
ORT_API2_STATUS(AllocatorGetInfo, _In_ const OrtAllocator* ort_allocator, _Outptr_ const struct OrtMemoryInfo** out);
/** \brief Get the default allocator
*
* The default allocator is a CPU based, non-arena. Always returns the same pointer to the same default allocator.
*
* \param[out] out Returned value should NOT be freed
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetAllocatorWithDefaultOptions, _Outptr_ OrtAllocator** out);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Override session symbolic dimensions
*
* Override symbolic dimensions (by specific denotation strings) with actual values if known at session initialization time to enable
* optimizations that can take advantage of fixed values (such as memory planning, etc)
*
* \param[in] options
* \param[in] dim_denotation
* \param[in] dim_value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(AddFreeDimensionOverride, _Inout_ OrtSessionOptions* options, _In_ const char* dim_denotation,
_In_ int64_t dim_value);
/// @}
/// \name OrtValue
/// @{
/* Internal information (not seen in Doxygen)
*
* APIs to support non-tensor types - map and sequence.
* Currently only the following types are supported
* Note: the following types should be kept in sync with data_types.h
* Map types
* =========
* std::map<std::string, std::string>
* std::map<std::string, int64_t>
* std::map<std::string, float>
* std::map<std::string, double>
* std::map<int64_t, std::string>
* std::map<int64_t, int64_t>
* std::map<int64_t, float>
* std::map<int64_t, double>
*
* Sequence types
* ==============
* std::vector<std::string>
* std::vector<int64_t>
* std::vector<float>
* std::vector<double>
* std::vector<std::map<std::string, float>>
* std::vector<std::map<int64_t, float>
*/
/** \brief Get non tensor data from an ::OrtValue
*
* If `value` is of type ONNX_TYPE_MAP, you need to retrieve the keys and values
* separately. Use index=0 to retrieve keys and index=1 to retrieve values.
* If `value` is of type ONNX_TYPE_SEQUENCE, use index to retrieve the index'th element
* of the sequence.
*
* \param[in] value
* \param[in] index See above for usage based on `value` type
* \param[in] allocator Allocator used to allocate ::OrtValue
* \param[out] out Created ::OrtValue that holds the element requested. Must be freed with OrtApi::ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetValue, _In_ const OrtValue* value, int index, _Inout_ OrtAllocator* allocator,
_Outptr_ OrtValue** out);
/** \brief Get non tensor value count from an ::OrtValue
*
* If `value` is of type ONNX_TYPE_MAP 2 will always be returned. For ONNX_TYPE_SEQUENCE
* the number of elements in the sequence will be returned
*
* \param[in] value
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetValueCount, _In_ const OrtValue* value, _Out_ size_t* out);
/** \brief Create a map or sequence ::OrtValue
*
* To construct a map (ONNX_TYPE_MAP), use num_values = 2 and `in` should be an array of 2 ::OrtValue%s
* representing keys and values.<br>
*
* To construct a sequence (ONNX_TYPE_SEQUENCE), use num_values = N where N is the number of the elements in the
* sequence. 'in' should be an array of N ::OrtValue%s.
*
* \param[in] in See above for details
* \param[in] num_values
* \param[in] value_type Must be either ONNX_TYPE_MAP or ONNX_TYPE_SEQUENCE
* \param[out] out Newly created ::OrtValue. Must be freed with OrtApi::ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateValue, _In_reads_(num_values) const OrtValue* const* in, size_t num_values,
enum ONNXType value_type, _Outptr_ OrtValue** out);
/** \brief Create an opaque (custom user defined type) ::OrtValue
*
* Constructs an ::OrtValue that contains a value of non-standard type created for
* experiments or while awaiting standardization. ::OrtValue in this case would contain
* an internal representation of the Opaque type. Opaque types are distinguished from
* each other by two strings 1) domain and 2) type name. The combination of the two
* must be unique, so the type representation is properly identified internally. The combination
* must be properly registered from within ORT at both compile/run time or by another API.
*
* To construct the ::OrtValue pass domain and type names, also a pointer to a data container
* the type of which must be known to both ORT and the client program. That data container may or may
* not match the internal representation of the Opaque type. The sizeof(data_container) is passed for
* verification purposes.
*
* \param[in] domain_name Null terminated string of the domain name
* \param[in] type_name Null terminated string of the type name
* \param[in] data_container User pointer Data to populate ::OrtValue
* \param[in] data_container_size Size in bytes of what `data_container` points to
* \param[out] out Newly created ::OrtValue. Must be freed with OrtApi::ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateOpaqueValue, _In_z_ const char* domain_name, _In_z_ const char* type_name,
_In_ const void* data_container, size_t data_container_size, _Outptr_ OrtValue** out);
/** \brief Get internal data from an opaque (custom user defined type) ::OrtValue
*
* Copies internal data from an opaque value into a user provided buffer
*
* \see OrtApi::CreateOpaqueValue
*
* \param[in] domain_name Null terminated string of the domain name
* \param[in] type_name Null terminated string of the type name
* \param[in] in The opaque ::OrtValue
* \param[out] data_container Buffer to copy data into
* \param[out] data_container_size Size in bytes of the buffer pointed to by data_container. Must match the size of the internal buffer.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetOpaqueValue, _In_ const char* domain_name, _In_ const char* type_name, _In_ const OrtValue* in,
_Out_ void* data_container, size_t data_container_size);
/// @}
/// \name OrtKernelInfo
/// Custom operator APIs.
/// @{
/** \brief Get a float stored as an attribute in the graph node
*
* \param[in] info ::OrtKernelInfo instance
* \param[in] name Null terminated string of the name of the attribute
* \param[out] out Pointer to memory where the attribute will be stored
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttribute_float, _In_ const OrtKernelInfo* info, _In_ const char* name,
_Out_ float* out);
/** \brief Fetch a 64-bit int stored as an attribute in the graph node
*
* \param[in] info ::OrtKernelInfo instance
* \param[in] name Null terminated string of the name of the attribute
* \param[out] out Pointer to memory where the attribute will be stored
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttribute_int64, _In_ const OrtKernelInfo* info, _In_ const char* name,
_Out_ int64_t* out);
/** \brief Fetch a string stored as an attribute in the graph node
*
* If `out` is nullptr, the value of `size` is set to the true size of the string
* attribute, and a success status is returned.
*
* If the `size` parameter is greater than or equal to the actual string attribute's size,
* the value of `size` is set to the true size of the string attribute, the provided memory
* is filled with the attribute's contents, and a success status is returned.
*
* If the `size` parameter is less than the actual string attribute's size and `out`
* is not nullptr, the value of `size` is set to the true size of the string attribute
* and a failure status is returned.)
*
* \param[in] info ::OrtKernelInfo instance
* \param[in] name Null terminated string of the name of the attribute
* \param[out] out Pointer to memory where the attribute will be stored
* \param[in,out] size See above comments for details
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttribute_string, _In_ const OrtKernelInfo* info, _In_ const char* name, _Out_ char* out,
_Inout_ size_t* size);
/// @}
/// \name OrtKernelContext
/// Custom operator APIs.
/// @{
/** \brief Used for custom operators, get the input count of a kernel
*
* \see ::OrtCustomOp
*/
ORT_API2_STATUS(KernelContext_GetInputCount, _In_ const OrtKernelContext* context, _Out_ size_t* out);
/** \brief Used for custom operators, get the output count of a kernel
*
* \see ::OrtCustomOp
*/
ORT_API2_STATUS(KernelContext_GetOutputCount, _In_ const OrtKernelContext* context, _Out_ size_t* out);
/** \brief Used for custom operators, get an input of a kernel
*
* \see ::OrtCustomOp
*/
ORT_API2_STATUS(KernelContext_GetInput, _In_ const OrtKernelContext* context, _In_ size_t index,
_Out_ const OrtValue** out);
/** \brief Used for custom operators, get an output of a kernel
*
* \see ::OrtCustomOp
*/
ORT_API2_STATUS(KernelContext_GetOutput, _Inout_ OrtKernelContext* context, _In_ size_t index,
_In_ const int64_t* dim_values, size_t dim_count, _Outptr_ OrtValue** out);
/// @}
/// \name OrtEnv
/// @{
ORT_CLASS_RELEASE(Env);
/// @}
/// \name OrtStatus
/// @{
ORT_CLASS_RELEASE(Status);
/// @}
/// \name OrtMemoryInfo
/// @{
ORT_CLASS_RELEASE(MemoryInfo);
/// @}
/// \name OrtSession
/// @{
ORT_CLASS_RELEASE(Session); // Don't call ReleaseSession from Dllmain (because session owns a thread pool)
/// @}
/// \name OrtValue
/// @{
ORT_CLASS_RELEASE(Value);
/// @}
/// \name OrtRunOptions
/// @{
ORT_CLASS_RELEASE(RunOptions);
/// @}
/// \name OrtTypeInfo
/// @{
ORT_CLASS_RELEASE(TypeInfo);
/// @}
/// \name OrtTensorTypeAndShapeInfo
/// @{
ORT_CLASS_RELEASE(TensorTypeAndShapeInfo);
/// @}
/// \name OrtSessionOptions
/// @{
ORT_CLASS_RELEASE(SessionOptions);
/// @}
/// \name OrtCustomOpDomain
/// @{
ORT_CLASS_RELEASE(CustomOpDomain);
/// @}
/// \name OrtTypeInfo
/// @{
/** \brief Get denotation from type information
*
* Augments ::OrtTypeInfo to return denotations on the type.
*
* This is used by WinML to determine if an input/output is intended to be an Image or a Tensor.
*
* \param[in] type_info
* \param[out] denotation Pointer to the null terminated denotation string is written to this pointer. This pointer is valid until the object is destroyed or the name is changed, do not free.
* \param[out] len Length in bytes of the string returned in `denotation`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetDenotationFromTypeInfo, _In_ const OrtTypeInfo* type_info, _Out_ const char** const denotation,
_Out_ size_t* len);
/** \brief Get detailed map information from an ::OrtTypeInfo
*
* This augments ::OrtTypeInfo to return an ::OrtMapTypeInfo when the type is a map.
* The OrtMapTypeInfo has additional information about the map's key type and value type.
*
* This is used by WinML to support model reflection APIs.
*
* \param[out] type_info
* \param[out] out A pointer to the ::OrtMapTypeInfo. Do not free this value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CastTypeInfoToMapTypeInfo, _In_ const OrtTypeInfo* type_info,
_Outptr_result_maybenull_ const OrtMapTypeInfo** out);
/** \brief Cast ::OrtTypeInfo to an ::OrtSequenceTypeInfo
*
* This api augments ::OrtTypeInfo to return an ::OrtSequenceTypeInfo when the type is a sequence.
* The ::OrtSequenceTypeInfo has additional information about the sequence's element type.
*
* This is used by WinML to support model reflection APIs.
*
* \param[in] type_info
* \param[out] out A pointer to the OrtSequenceTypeInfo. Do not free this value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CastTypeInfoToSequenceTypeInfo, _In_ const OrtTypeInfo* type_info,
_Outptr_result_maybenull_ const OrtSequenceTypeInfo** out);
/// @}
/// \name OrtMapTypeInfo
/// @{
/** \brief Get key type from an ::OrtMapTypeInfo
*
* Key types are restricted to being scalar types.
*
* This is used by WinML to support model reflection APIs.
*
* \param[in] map_type_info
* \param[out] out
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetMapKeyType, _In_ const OrtMapTypeInfo* map_type_info, _Out_ enum ONNXTensorElementDataType* out);
/** \brief Get the value type from an ::OrtMapTypeInfo
*
* \param[in] map_type_info
* \param[out] type_info
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetMapValueType, _In_ const OrtMapTypeInfo* map_type_info, _Outptr_ OrtTypeInfo** type_info);
/// @}
/// \name OrtSequenceTypeInfo
/// @{
/** \brief Get element type from an ::OrtSequenceTypeInfo
*
* This is used by WinML to support model reflection APIs.
*
* \param[in] sequence_type_info
* \param[out] type_info
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSequenceElementType, _In_ const OrtSequenceTypeInfo* sequence_type_info,
_Outptr_ OrtTypeInfo** type_info);
/// @}
/// \name OrtMapTypeInfo
/// @{
ORT_CLASS_RELEASE(MapTypeInfo);
/// @}
/// \name OrtSequenceTypeInfo
/// @{
ORT_CLASS_RELEASE(SequenceTypeInfo);
/// @}
/// \name OrtSession
/// @{
/** \brief End profiling and return filename of the profile data
*
* Profiling is turned on through OrtApi::EnableProfiling
*
* \param[in] session
* \param[in] allocator
* \param[out] out Null terminated string of the filename, allocated using `allocator`. Must be freed using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionEndProfiling, _In_ OrtSession* session, _Inout_ OrtAllocator* allocator, _Outptr_ char** out);
/** \brief Get ::OrtModelMetadata from an ::OrtSession
*
* \param[in] session
* \param[out] out Newly created ::OrtModelMetadata. Must be freed using OrtApi::ReleaseModelMetadata
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetModelMetadata, _In_ const OrtSession* session, _Outptr_ OrtModelMetadata** out);
/// @}
/// \name OrtModelMetadata
/// @{
/** \brief Get `producer name` from an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[in] allocator
* \param[out] value Set to a null terminated string allocated using `allocator`. Must be freed using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetProducerName, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/** \brief Get `graph name` from an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[in] allocator
* \param[out] value Set to a null terminated string allocated using `allocator`. Must be freed using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetGraphName, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/** \brief Get `domain` from an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[in] allocator
* \param[out] value Set to a null terminated string allocated using `allocator`. Must be freed using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetDomain, _In_ const OrtModelMetadata* model_metadata, _Inout_ OrtAllocator* allocator,
_Outptr_ char** value);
/** \brief Get `description` from an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[in] allocator
* \param[out] value Set to a null terminated string allocated using `allocator`. Must be freed using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetDescription, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/** \brief Return data for a key in the custom metadata map in an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[in] allocator
* \param[in] key Null terminated string
* \param[out] value Set to a null terminated string allocated using `allocator`. Must be freed using `allocator`
* `value` will be set to nullptr if the given key is not found in the custom metadata map.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataLookupCustomMetadataMap, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _In_ const char* key, _Outptr_result_maybenull_ char** value);
/** \brief Get version number from an ::OrtModelMetadata
*
* \param[in] model_metadata
* \param[out] value Set to the version number
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetVersion, _In_ const OrtModelMetadata* model_metadata, _Out_ int64_t* value);
ORT_CLASS_RELEASE(ModelMetadata);
/// @}
/// \name OrtEnv
/// @{
/** \brief Create an OrtEnv
*
* Create an environment with global threadpools that will be shared across sessions.
* Use this in conjunction with OrtApi::DisablePerSessionThreads or else the session will use
* its own thread pools.
*
* \param[in] log_severity_level The log severity level.
* \param[in] logid The log identifier.
* \param[in] tp_options
* \param[out] out Returned newly created OrtEnv. Must be freed with OrtApi::ReleaseEnv
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateEnvWithGlobalThreadPools, OrtLoggingLevel log_severity_level, _In_ const char* logid,
_In_ const OrtThreadingOptions* tp_options, _Outptr_ OrtEnv** out);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Use global thread pool on a session
*
* Disable using per session thread pool and use the shared global threadpool.
* This should be used in conjunction with OrtApi::CreateEnvWithGlobalThreadPools.
*
* \param[in] options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(DisablePerSessionThreads, _Inout_ OrtSessionOptions* options);
/// @}
/// \name OrtThreadingOptions
/// @{
/** \brief Create an ::OrtThreadingOptions
*
* \param[out] out Newly created ::OrtThreadingOptions. Must be freed with OrtApi::ReleaseThreadingOptions
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateThreadingOptions, _Outptr_ OrtThreadingOptions** out);
ORT_CLASS_RELEASE(ThreadingOptions);
/// @}
/// \name OrtModelMetadata
/// @{
/**
*
* \param[in] model_metadata
* \param[in] allocator
* \param[out] keys Array of null terminated strings (array count = num_keys) allocated using `allocator`.
* The strings and the pointer array must be freed using `allocator`
* `keys` will be set to nullptr if the custom metadata map is empty.
* \param[out] num_keys Set to the number of elements in the `keys` array
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetCustomMetadataMapKeys, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _Outptr_result_buffer_maybenull_(*num_keys) char*** keys, _Out_ int64_t* num_keys);
/// @}
/// \name OrtSessionOptions
/// @{
/**
*
* Override symbolic dimensions (by specific name strings) with actual values
* if known at session initialization time to enable optimizations that can
* take advantage of fixed values (such as memory planning, etc)
*
*/
ORT_API2_STATUS(AddFreeDimensionOverrideByName,
_Inout_ OrtSessionOptions* options, _In_ const char* dim_name,
_In_ int64_t dim_value);
/// @}
/// \name Misc
/// @{
/** \brief Get the names of all available providers
*
* \note The providers in the list are not guaranteed to be usable. They may fail to load due to missing system dependencies.
* For example, if the CUDA/cuDNN libraries are not installed, the CUDA provider will report an error when it is added to the session options.
*
* \param[out] out_ptr Set to a pointer to an array of null terminated strings of the available providers. The entries and the
* array itself must be freed using OrtApi::ReleaseAvailableProviders
* \param[out] provider_length Set to the number of entries in the `out_ptr` array
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetAvailableProviders, _Outptr_ char*** out_ptr, _Out_ int* provider_length);
/** \brief Release data from OrtApi::GetAvailableProviders
*
* \param[in] ptr The `out_ptr` result from OrtApi::GetAvailableProviders.
* \param[in] providers_length The `provider_length` result from OrtApi::GetAvailableProviders
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ReleaseAvailableProviders, _In_ char** ptr,
_In_ int providers_length);
/// @}
/// \name OrtValue
/// @{
/** \brief Get the length of a single string in a string tensor
*
* \param[in] value A string tensor
* \param[in] index Index of the string in the tensor
* \param[out] out Set to number of bytes of the string element
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetStringTensorElementLength, _In_ const OrtValue* value, size_t index, _Out_ size_t* out);
/** \brief Get a single string from a string tensor
*
* \param[in] value A string tensor
* \param[in] s_len Number of bytes in the `s` buffer. Must match the value returned by OrtApi::GetStringTensorElementLength.
* \param[in] index Index of the string in the tensor
* \param[out] s The string element contents in UTF-8 encoding. The string is NOT null-terminated.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetStringTensorElement, _In_ const OrtValue* value, size_t s_len, size_t index, _Out_writes_bytes_all_(s_len) void* s);
/** \brief Set a single string in a string tensor
*
* \param[in] value A string tensor
* \param[in] s A null terminated UTF-8 encoded string
* \param[in] index Index of the string in the tensor to set
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(FillStringTensorElement, _Inout_ OrtValue* value, _In_ const char* s, size_t index);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Set a session configuration entry as a pair of strings
*
* If a configuration with same key exists, this will overwrite the configuration with the given config_value.
*
* The config_key and the format of config_value are defined in onnxruntime_session_options_config_keys.h
*
* \param[in] options
* \param[in] config_key A null terminated string representation of the config key
* \param[in] config_value A null terminated string representation of the config value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(AddSessionConfigEntry, _Inout_ OrtSessionOptions* options,
_In_z_ const char* config_key, _In_z_ const char* config_value);
/// @}
/// \name OrtAllocator
/// @{
/** \brief Create an allocator for an ::OrtSession following an ::OrtMemoryInfo
*
* \param[in] session
* \param[in] mem_info valid ::OrtMemoryInfo instance
* \param[out] out Newly created ::OrtAllocator. Must be freed with OrtApi::ReleaseAllocator
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateAllocator, _In_ const OrtSession* session, _In_ const OrtMemoryInfo* mem_info,
_Outptr_ OrtAllocator** out);
/** \brief Release an ::OrtAllocator obtained from OrtApi::CreateAllocator
*/
ORT_CLASS_RELEASE(Allocator);
/// @}
/// \name OrtSession
/// @{
/** \brief Run a model using Io Bindings for the inputs & outputs
*
* \see OrtApi::Run
*
* \param[in] session
* \param[in] run_options
* \param[in] binding_ptr
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RunWithBinding, _Inout_ OrtSession* session, _In_ const OrtRunOptions* run_options, _In_ const OrtIoBinding* binding_ptr);
/** \brief Create an ::OrtIoBinding instance
*
* An IoBinding object allows one to bind pre-allocated ::OrtValue%s to input names.
* Thus if you want to use a raw on device buffer as input or output you can avoid
* extra copy during runtime.
*
* \param[in] session
* \param[out] out Newly created ::OrtIoBinding. Must be freed with OrtApi::ReleaseIoBinding
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateIoBinding, _Inout_ OrtSession* session, _Outptr_ OrtIoBinding** out);
/// @}
/// \name OrtIoBinding
/// @{
/** \brief Release an ::OrtIoBinding obtained from OrtApi::CreateIoBinding
*/
ORT_CLASS_RELEASE(IoBinding);
/** \brief Bind an ::OrtValue to an ::OrtIoBinding input
*
* When using OrtApi::RunWithBinding this value is used for the named input
*
* \param[in] binding_ptr
* \param[in] name Name for the model input
* \param[in] val_ptr ::OrtValue of Tensor type.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(BindInput, _Inout_ OrtIoBinding* binding_ptr, _In_ const char* name, _In_ const OrtValue* val_ptr);
/** \brief Bind an ::OrtValue to an ::OrtIoBinding output
*
* When using OrtApi::RunWithBinding this value is used for the named output
*
* \param[in] binding_ptr
* \param[in] name Null terminated string of the model output name
* \param[in] val_ptr ::OrtValue of Tensor type.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(BindOutput, _Inout_ OrtIoBinding* binding_ptr, _In_ const char* name, _In_ const OrtValue* val_ptr);
/** \brief Bind an ::OrtIoBinding output to a device
*
* Binds the ::OrtValue to a device which is specified by ::OrtMemoryInfo.
* You can either create an instance of ::OrtMemoryInfo with a device id or obtain one from the allocator that you have created/are using
* This is useful when one or more outputs have dynamic shapes and, it is hard to pre-allocate and bind a chunk of
* memory within ::OrtValue ahead of time.
*
* \see OrtApi::RunWithBinding
*
* \param[in] binding_ptr
* \param[in] name Null terminated string of the device name
* \param[in] mem_info_ptr
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(BindOutputToDevice, _Inout_ OrtIoBinding* binding_ptr, _In_ const char* name, _In_ const OrtMemoryInfo* mem_info_ptr);
/** \brief Get the names of an ::OrtIoBinding's outputs
*
* Returns the names of the outputs in the order they were bound. This is useful after running the model
* with bound outputs because the returned names are in order in which output ::OrtValue are returned. This is useful if
* the order of outputs and their names is not known.
*
* \param[in] binding_ptr
* \param[in] allocator Allocator used to allocate continuous buffers for output strings and lengths.
* \param[out] buffer Returns an array of non-null terminated UTF-8 strings. The number of strings stored is returned in the count parameter.
* This buffer is allocated using `allocator` and must be freed using it.
* \param[out] lengths Returns an array of `count` lengths of the strings returned in `buffer`
* This buffer is allocated using `allocator` and must be freed using it.
* \param[out] count Number of strings returned. If `binding_ptr` has no bound outputs, zero is returned,
* no memory allocation is performed and buffer and lengths are set to nullptr.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetBoundOutputNames, _In_ const OrtIoBinding* binding_ptr, _In_ OrtAllocator* allocator,
_Out_ char** buffer, _Out_writes_all_(count) size_t** lengths, _Out_ size_t* count);
/** \brief Get the output ::OrtValue objects from an ::OrtIoBinding
*
* Returns an array of pointers to individually allocated ::OrtValue%s that contain results of a model execution with OrtApi::RunWithBinding
* The array contains the same number of ::OrtValue%s and they are in the same order as they were bound with OrtApi::BindOutput
* or OrtApi::BindOutputToDevice.
*
* The returned ::OrtValue%s must be released using OrtApi::ReleaseValue after they are no longer needed.
* The array is allocated using the specified instance of the allocator and must be freed using the same allocator after
* all the ::OrtValue%s contained therein are individually released.
*
* \param[in] binding_ptr
* \param[in] allocator Allocator used to allocate output array
* \param[out] output Set to the allocated array of allocated ::OrtValue outputs. Set to nullptr if there are 0 outputs.
* \param[out] output_count Set to number of ::OrtValue%s returned
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetBoundOutputValues, _In_ const OrtIoBinding* binding_ptr, _In_ OrtAllocator* allocator,
_Out_writes_all_(output_count) OrtValue*** output, _Out_ size_t* output_count);
/** \brief Clears any previously set Inputs for an ::OrtIoBinding
*/
void(ORT_API_CALL* ClearBoundInputs)(_Inout_ OrtIoBinding* binding_ptr) NO_EXCEPTION ORT_ALL_ARGS_NONNULL;
/** \brief Clears any previously set Outputs for an ::OrtIoBinding
*/
void(ORT_API_CALL* ClearBoundOutputs)(_Inout_ OrtIoBinding* binding_ptr) NO_EXCEPTION ORT_ALL_ARGS_NONNULL;
/// @}
/// \name OrtValue
/// @{
/** \brief Direct memory access to a specified tensor element
*
* For example, given a tensor with shape of [3,224,224], a pointer to the element at location [2,150,128] can be retrieved
*
* This function only works for numeric type tensors (No strings, etc).
* This is a no-copy method whose returned pointer is valid until the passed in ::OrtValue is free'd.
*
* \param[in] value
* \param[in] location_values Pointer to an array of index values that specify an element's location relative to its shape
* \param[in] location_values_count Number of elements in location_values. Must match the number of elements in the tensor's shape.
* \param[out] out Set to a pointer to the element specified
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(TensorAt, _Inout_ OrtValue* value, const int64_t* location_values, size_t location_values_count, _Outptr_ void** out);
/// @}
/// \name OrtEnv
/// @{
/** \brief Create an allocator and register it with the ::OrtEnv
*
* Enables sharing the allocator between multiple sessions that use the same env instance.
* Lifetime of the created allocator will be valid for the duration of the environment.
* Returns an error if an allocator with the same ::OrtMemoryInfo is already registered.
*
* See https://onnxruntime.ai/docs/reference/api/c-api.html for details.
*
* \param[in] env ::OrtEnv instance
* \param[in] mem_info
* \param[in] arena_cfg Pass nullptr for defaults
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateAndRegisterAllocator, _Inout_ OrtEnv* env, _In_ const OrtMemoryInfo* mem_info,
_In_ const OrtArenaCfg* arena_cfg);
/** \brief Set language projection
*
* Set the language projection for collecting telemetry data when Env is created.
*
* The default is ORT_PROJECTION_C, which means it will classify the language not in the list to C also.
*
* \param[in] ort_env
* \param[in] projection
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetLanguageProjection, _In_ const OrtEnv* ort_env, _In_ OrtLanguageProjection projection);
/// @}
/// \name OrtSession
/// @{
/** \brief Return the time that profiling was started
*
* \note The timer precision varies per platform. On Windows and MacOS, the precision will be ~100ns
*
* \param[in] session
* \param[out] out nanoseconds of profiling's start time
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionGetProfilingStartTimeNs, _In_ const OrtSession* session, _Outptr_ uint64_t* out);
/// @}
/// \name OrtThreadingOptions
/// @{
/** \brief Set global intra-op thread count
*
* This configures the global thread pool options to be used in the call to OrtApi::CreateEnvWithGlobalThreadPools
*
* \param[in] tp_options
* \param[in] intra_op_num_threads Number of threads, special values:<br>
* 0 = Use default thread count<br>
* 1 = The invoking thread will be used; no threads will be created in the thread pool.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalIntraOpNumThreads, _Inout_ OrtThreadingOptions* tp_options, int intra_op_num_threads);
/** \brief Set global inter-op thread count
*
* This configures the global thread pool options to be used in the call to OrtApi::CreateEnvWithGlobalThreadPools
*
* \param[in] tp_options
* \param[in] inter_op_num_threads Number of threads, special values:<br>
* 0 = Use default thread count<br>
* 1 = The invoking thread will be used; no threads will be created in the thread pool.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalInterOpNumThreads, _Inout_ OrtThreadingOptions* tp_options, int inter_op_num_threads);
/** \brief Set global spin control options
*
* This will configure the global thread pool options to be used in the call to OrtApi::CreateEnvWithGlobalThreadPools.
* Allow spinning of thread pools when their queues are empty. This will set the value for both
* inter_op and intra_op threadpools.
*
* \param[in] tp_options
* \param[in] allow_spinning Valid values are 0 or 1.<br>
* 0 = It won't spin (recommended if CPU usage is high)<br>
* 1 = Threadpool will spin to wait for queue to become non-empty
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalSpinControl, _Inout_ OrtThreadingOptions* tp_options, int allow_spinning);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Add a pre-allocated initializer to a session
*
* If a model contains an initializer with a name that is same as the name passed to this call,
* ORT will use this initializer instance instead of deserializing one from the model file. This
* is useful when you want to share the same initializer across sessions.
*
* \param[in] options
* \param[in] name Null terminated string of the initializer name
* \param[in] val ::OrtValue containing the initializer. Its lifetime and the underlying initializer buffer must be
* managed by the user (created using the OrtApi::CreateTensorWithDataAsOrtValue) and it must outlive the session object
* to which it is added.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(AddInitializer, _Inout_ OrtSessionOptions* options, _In_z_ const char* name,
_In_ const OrtValue* val);
/// @}
/// \name OrtEnv
/// @{
/**
* Create a custom environment with global threadpools and logger that will be shared across sessions.
* Use this in conjunction with OrtApi::DisablePerSessionThreads or else the session will use
* its own thread pools.
*
* \param[in] logging_function A pointer to a logging function.
* \param[in] logger_param A pointer to arbitrary data passed as the ::OrtLoggingFunction `param` parameter to
* `logging_function`.
* \param[in] log_severity_level The log severity level.
* \param[in] logid The log identifier.
* \param[in] tp_options
* \param[out] out Newly created OrtEnv. Must be freed with OrtApi::ReleaseEnv
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateEnvWithCustomLoggerAndGlobalThreadPools, OrtLoggingFunction logging_function, _In_opt_ void* logger_param, OrtLoggingLevel log_severity_level,
_In_ const char* logid, _In_ const struct OrtThreadingOptions* tp_options, _Outptr_ OrtEnv** out);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Append CUDA provider to session options
*
* If CUDA is not available (due to a non CUDA enabled build, or if CUDA is not installed on the system), this function will return failure.
*
* \param[in] options
* \param[in] cuda_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_CUDA,
_In_ OrtSessionOptions* options, _In_ const OrtCUDAProviderOptions* cuda_options);
/** \brief Append ROCM execution provider to the session options
*
* If ROCM is not available (due to a non ROCM enabled build, or if ROCM is not installed on the system), this function will return failure.
*
* \param[in] options
* \param[in] rocm_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_ROCM,
_In_ OrtSessionOptions* options, _In_ const OrtROCMProviderOptions* rocm_options);
/** \brief Append OpenVINO execution provider to the session options
*
* If OpenVINO is not available (due to a non OpenVINO enabled build, or if OpenVINO is not installed on the system), this function will fail.
*
* \param[in] options
* \param[in] provider_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_OpenVINO,
_In_ OrtSessionOptions* options, _In_ const OrtOpenVINOProviderOptions* provider_options);
/// @}
/// \name OrtThreadingOptions
/// @{
/** \brief Set threading flush-to-zero and denormal-as-zero
*
* Sets global thread pool options to be used in the call to OrtApi::CreateEnvWithGlobalThreadPools.
* Flush-to-zero and denormal-as-zero are applied to threads in both intra and inter global thread pool.
* \note This option is not needed if the models used have no denormals. Having no denormals is recommended as this option may hurt model accuracy.
*
* \param[in] tp_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalDenormalAsZero, _Inout_ OrtThreadingOptions* tp_options);
/// @}
/// \name OrtArenaCfg
/// @{
/** \deprecated Use OrtApi::CreateArenaCfgV2
*
* This will create the configuration of an arena that can eventually be used to define an arena based allocator's behavior
*
* \param[in] max_mem Use 0 to allow ORT to choose the default
* \param[in] arena_extend_strategy Use -1 to allow ORT to choose the default, 0 = kNextPowerOfTwo, 1 = kSameAsRequested
* \param[in] initial_chunk_size_bytes Use -1 to allow ORT to choose the default
* \param[in] max_dead_bytes_per_chunk Use -1 to allow ORT to choose the default
* \param[in] out A pointer to an OrtArenaCfg instance
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateArenaCfg, _In_ size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes,
int max_dead_bytes_per_chunk, _Outptr_ OrtArenaCfg** out);
ORT_CLASS_RELEASE(ArenaCfg);
/// @}
/// \name OrtModelMetadata
/// @{
/**
* Use this to obtain the description of the graph present in the model
* (doc_string field of the GraphProto message within the ModelProto message).
* If it doesn't exist, an empty string will be returned.
*
* \param[in] model_metadata An instance of ::OrtModelMetadata
* \param[in] allocator Allocator used to allocate the string that will be returned back
* \param[out] value Set to a null terminated string allocated using `allocator`. The caller is responsible for freeing it using `allocator`
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(ModelMetadataGetGraphDescription, _In_ const OrtModelMetadata* model_metadata,
_Inout_ OrtAllocator* allocator, _Outptr_ char** value);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Append TensorRT provider to session options
*
* If TensorRT is not available (due to a non TensorRT enabled build, or if TensorRT is not installed on the system), this function will return failure.
*
* \param[in] options
* \param[in] tensorrt_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_TensorRT,
_In_ OrtSessionOptions* options, _In_ const OrtTensorRTProviderOptions* tensorrt_options);
/// @}
/// \name Misc
/// @{
/** \brief Set current GPU device ID
*
* Set the current device id of the GPU execution provider (CUDA/tensorrt/rocm). The device id should be less
* than the total number of devices available. This is only useful when multiple-GPUs are installed and it is
* required to restrict execution to a single GPU.
*
* \param[in] device_id
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetCurrentGpuDeviceId, _In_ int device_id);
/** \brief Get current GPU device ID
*
* Get the current device id of the GPU execution provider (CUDA/tensorrt/rocm).
*
* \see OrtApi::SetCurrentGpuDeviceId
*
* \param[out] device_id
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetCurrentGpuDeviceId, _In_ int* device_id);
/// @}
/// \name OrtKernelInfo
/// Custom operator APIs.
/// @{
/** \brief Fetch an array of int64_t values stored as an attribute in the graph node
*
*
* If `out` is nullptr, the value of `size` is set to the true size of the attribute
* array's size, and a success status is returned.
*
* If the `size` parameter is greater than or equal to the actual attribute array's size,
* the value of `size` is set to the true size of the attribute array's size,
* the provided memory is filled with the attribute's contents,
* and a success status is returned.
*
* If the `size` parameter is less than the actual attribute array's size and `out`
* is not nullptr, the value of `size` is set to the true size of the attribute array's size
* and a failure status is returned.)
*
* \param[in] info instance
* \param[in] name name of the attribute to be parsed
* \param[out] out pointer to memory where the attribute's contents are to be stored
* \param[in, out] size actual size of attribute array
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttributeArray_float, _In_ const OrtKernelInfo* info, _In_ const char* name,
_Out_ float* out, _Inout_ size_t* size);
/** \brief Fetch an array of int64_t values stored as an attribute in the graph node
*
* If `out` is nullptr, the value of `size` is set to the true size of the attribute
* array's size, and a success status is returned.
*
* If the `size` parameter is greater than or equal to the actual attribute array's size,
* the value of `size` is set to the true size of the attribute array's size,
* the provided memory is filled with the attribute's contents,
* and a success status is returned.
*
* If the `size` parameter is less than the actual attribute array's size and `out`
* is not nullptr, the value of `size` is set to the true size of the attribute array's size
* and a failure status is returned.)
*
* \param[in] info instance
* \param[in] name name of the attribute to be parsed
* \param[out] out pointer to memory where the attribute's contents are to be stored
* \param[in, out] size actual size of attribute array
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttributeArray_int64, _In_ const OrtKernelInfo* info, _In_ const char* name,
_Out_ int64_t* out, _Inout_ size_t* size);
/// @}
/// \name OrtArenaCfg
/// @{
/** \brief Create an ::OrtArenaCfg
*
* Create the configuration of an arena that can eventually be used to define an arena based allocator's behavior.
*
* Supported keys are (See https://onnxruntime.ai/docs/reference/api/c-api.html for details on what the
* following parameters mean and how to choose these values.):
* "max_mem": Maximum memory that can be allocated by the arena based allocator.
* Use 0 for ORT to pick the best value. Default is 0.
* "arena_extend_strategy": 0 = kNextPowerOfTwo, 1 = kSameAsRequested.
* Use -1 to allow ORT to choose the default.
* "initial_chunk_size_bytes": (Possible) Size of the first allocation in the arena.
* Only relevant if arena strategy is `kNextPowerOfTwo`. Use -1 to allow ORT to choose the default.
* Ultimately, the first allocation size is determined by the allocation memory request.
* "max_dead_bytes_per_chunk": Threshold of unused memory in an allocated chunk of arena memory after
* crossing which the current chunk is chunked into 2.
* "initial_growth_chunk_size_bytes": (Possible) Size of the second allocation in the arena.
* Only relevant if arena strategy is `kNextPowerOfTwo`. Use -1 to allow ORT to choose the default.
* Ultimately, the allocation size is determined by the allocation memory request.
* Further allocation sizes are governed by the arena extend strategy.
*
* \param[in] arena_config_keys Keys to configure the arena
* \param[in] arena_config_values Values to configure the arena
* \param[in] num_keys Number of keys in `arena_config_keys` and `arena_config_values`
* \param[out] out Newly created ::OrtArenaCfg. Must be freed with OrtApi::ReleaseArenaCfg
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateArenaCfgV2, _In_reads_(num_keys) const char* const* arena_config_keys,
_In_reads_(num_keys) const size_t* arena_config_values, _In_ size_t num_keys,
_Outptr_ OrtArenaCfg** out);
/// @}
/// \name OrtRunOptions
/// @{
/** \brief Set a single run configuration entry as a pair of strings
*
* If a configuration with same key exists, this will overwrite the configuration with the given config_value
*
* The config_key and the format of config_value are defined in onnxruntime_run_options_config_keys.h
*
* \param[in] options
* \param[in] config_key A null terminated string representation of the config key
* \param[in] config_value A null terminated string representation of the config value
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(AddRunConfigEntry, _Inout_ OrtRunOptions* options,
_In_z_ const char* config_key, _In_z_ const char* config_value);
/// @}
/// \name OrtPrepackedWeightsContainer
/// @{
/** \brief Create an ::OrtPrepackedWeightsContainer
*
* This container will hold pre-packed buffers of shared initializers for sharing between sessions
* (i.e.) if there are shared initializers that can be shared between sessions, the pre-packed buffers
* of these (if any) may possibly be shared to provide memory footprint savings. Pass this container
* to sessions that you would like to share pre-packed buffers of shared initializers at session
* creation time.
*
* \param[out] out Newly created ::OrtPrepackedWeightsContainer. Must be freed with OrtApi::ReleasePrepackedWeightsContainer
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreatePrepackedWeightsContainer, _Outptr_ OrtPrepackedWeightsContainer** out);
/** \brief Release OrtPrepackedWeightsContainer instance
*
* \note instance must not be released until the sessions using it are released
*/
ORT_CLASS_RELEASE(PrepackedWeightsContainer);
/// @}
/// \name OrtSession
/// @{
/** \brief Create session with prepacked weights container
*
* Same functionality offered by OrtApi::CreateSession except that a container that contains
* pre-packed weights' buffers is written into/read from by the created session.
* This is useful when used in conjunction with OrtApi::AddInitializer which injects
* shared initializer info into sessions. Wherever possible, the pre-packed versions of these
* shared initializers are cached in this container so that multiple sessions can just re-use
* these instead of duplicating these in memory.
*
* \param[in] env OrtEnv instance instance
* \param[in] model_path Null terminated string of the path (wchar on Windows, char otherwise)
* \param[in] options
* \param[in] prepacked_weights_container
* \param[out] out Newly created ::OrtSession. Must be freed with OrtApi::ReleaseSession
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSessionWithPrepackedWeightsContainer, _In_ const OrtEnv* env, _In_ const ORTCHAR_T* model_path,
_In_ const OrtSessionOptions* options, _Inout_ OrtPrepackedWeightsContainer* prepacked_weights_container,
_Outptr_ OrtSession** out);
/** \brief Create session from memory with prepacked weights container
*
* Same functionality offered by OrtApi::CreateSessionFromArray except that a container that contains
* pre-packed weights' buffers is written into/read from by the created session.
* This is useful when used in conjunction with OrtApi::AddInitializer which injects
* shared initializer info into sessions. Wherever possible, the pre-packed versions of these
* shared initializers are cached in this container so that multiple sessions can just re-use
* these instead of duplicating these in memory.
*
* \param[in] env
* \param[in] model_data Array of bytes holding the model
* \param[in] model_data_length Number of bytes in `model_data_model`
* \param[in] options
* \param[in] prepacked_weights_container
* \param[out] out Newly created ::OrtSession. Must be freed with OrtApi::ReleaseSession
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSessionFromArrayWithPrepackedWeightsContainer, _In_ const OrtEnv* env,
_In_ const void* model_data, size_t model_data_length,
_In_ const OrtSessionOptions* options, _Inout_ OrtPrepackedWeightsContainer* prepacked_weights_container,
_Outptr_ OrtSession** out);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Append TensorRT execution provider to the session options
*
* If TensorRT is not available (due to a non TensorRT enabled build), this function will return failure.
*
* This is slightly different from OrtApi::SessionOptionsAppendExecutionProvider_TensorRT, it takes an
* ::OrtTensorRTProviderOptions which is publicly defined. This takes an opaque ::OrtTensorRTProviderOptionsV2
* which must be created with OrtApi::CreateTensorRTProviderOptions.
*
* For OrtApi::SessionOptionsAppendExecutionProvider_TensorRT, the user needs to instantiate ::OrtTensorRTProviderOptions
* as well as allocate/release buffers for some members of ::OrtTensorRTProviderOptions.
* Here, OrtApi::CreateTensorRTProviderOptions and Ortapi::ReleaseTensorRTProviderOptions will do the memory management for you.
*
* \param[in] options
* \param[in] tensorrt_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_TensorRT_V2,
_In_ OrtSessionOptions* options, _In_ const OrtTensorRTProviderOptionsV2* tensorrt_options);
/// @}
/// \name OrtTensorRTProviderOptionsV2
/// @{
/** \brief Create an OrtTensorRTProviderOptionsV2
*
* \param[out] out Newly created ::OrtTensorRTProviderOptionsV2. Must be released with OrtApi::ReleaseTensorRTProviderOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateTensorRTProviderOptions, _Outptr_ OrtTensorRTProviderOptionsV2** out);
/** \brief Set options in a TensorRT Execution Provider.
*
* Please refer to https://www.onnxruntime.ai/docs/reference/execution-providers/TensorRT-ExecutionProvider.html#c-api-example
* to know the available keys and values. Key should be in null terminated string format of the member of ::OrtTensorRTProviderOptionsV2
* and value should be its related range.
*
* For example, key="trt_max_workspace_size" and value="2147483648"
*
* \param[in] tensorrt_options
* \param[in] provider_options_keys Array of UTF-8 null-terminated string for provider options keys
* \param[in] provider_options_values Array of UTF-8 null-terminated string for provider options values
* \param[in] num_keys Number of elements in the `provider_option_keys` and `provider_options_values` arrays
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(UpdateTensorRTProviderOptions, _Inout_ OrtTensorRTProviderOptionsV2* tensorrt_options,
_In_reads_(num_keys) const char* const* provider_options_keys,
_In_reads_(num_keys) const char* const* provider_options_values,
_In_ size_t num_keys);
/** \brief Get serialized TensorRT provider options string.
*
* For example, "trt_max_workspace_size=2147483648;trt_max_partition_iterations=10;trt_int8_enable=1;......"
*
* \param tensorrt_options - OrTensorRTProviderOptionsV2 instance
* \param allocator - a ptr to an instance of OrtAllocator obtained with OrtApi::CreateAllocator or OrtApi::GetAllocatorWithDefaultOptions
* the specified allocator will be used to allocate continuous buffers for output strings and lengths.
* \param ptr - is a UTF-8 null terminated string allocated using 'allocator'. The caller is responsible for using the same allocator to free it.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorRTProviderOptionsAsString, _In_ const OrtTensorRTProviderOptionsV2* tensorrt_options, _Inout_ OrtAllocator* allocator, _Outptr_ char** ptr);
/** \brief Release an ::OrtTensorRTProviderOptionsV2
*
* \note This is an exception in the naming convention of other Release* functions, as the name of the method does not have the V2 suffix, but the type does
*/
void(ORT_API_CALL* ReleaseTensorRTProviderOptions)(_Frees_ptr_opt_ OrtTensorRTProviderOptionsV2* input);
/// @}
/// \name OrtSessionOptions
/// @{
/** \brief Enable custom operators
*
* See onnxruntime-extensions: https://github.com/microsoft/onnxruntime-extensions.git
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(EnableOrtCustomOps, _Inout_ OrtSessionOptions* options);
/// @}
/// \name OrtAllocator
/// @{
/** \brief Register a custom allocator
*
* Enables sharing between multiple sessions that use the same env instance.
* Returns an error if an allocator with the same ::OrtMemoryInfo is already registered.
*
* The behavior of this is exactly the same as OrtApi::CreateAndRegisterAllocator except
* instead of ORT creating an allocator based on provided info, in this case
* ORT uses the user-provided custom allocator.
* See https://onnxruntime.ai/docs/reference/api/c-api.html for details.
*
* \param[in] env
* \param[in] allocator User provided allocator
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(RegisterAllocator, _Inout_ OrtEnv* env, _In_ OrtAllocator* allocator);
/** \brief Unregister a custom allocator
*
* It is an error if you provide an ::OrtMemoryInfo not corresponding to any
* registered allocators for sharing.
*
* \param[in] env
* \param[in] mem_info
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(UnregisterAllocator, _Inout_ OrtEnv* env,
_In_ const OrtMemoryInfo* mem_info);
/// @}
/// \name OrtValue
/// @{
/** \brief Sets *out to 1 iff an ::OrtValue is a SparseTensor, and 0 otherwise
*
* \param[in] value existing ::OrtValue
* \param[out] out unless an error occurs, contains 1 iff the value contains an instance
* of sparse tensor or 0 otherwise.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(IsSparseTensor, _In_ const OrtValue* value, _Out_ int* out);
/** \brief Create an ::OrtValue with a sparse tensor that is empty.
*
* Use FillSparseTensor<Format>() functions to populate sparse tensor with non-zero values and
* format specific indices data.
* Use ReleaseValue to destroy the sparse tensor, this will also release the buffer inside the output value
* if any was allocated.
* \param[in,out] allocator allocator to use when performing an allocation. Allocation will be performed
* by FillSparseTensor<Format>() APIs. The lifespan of the allocator instance must eclipse the lifespan
* this sparse tensor instance as the same allocator will be used to free memory.
* \param[in] dense_shape shape of the original dense tensor
* \param[in] dense_shape_len number of shape dimensions being passed
* \param[in] type must be one of TENSOR_ELEMENT_DATA_TYPE_xxxx
* \param[out] out Should be freed by calling ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSparseTensorAsOrtValue, _Inout_ OrtAllocator* allocator, _In_ const int64_t* dense_shape,
size_t dense_shape_len, ONNXTensorElementDataType type, _Outptr_ OrtValue** out);
/**
* This fills populates an empty tensor that was created using OrtApi::CreateSparseTensorAsOrtValue.
* This will allocate required memory and copy the supplied NNZ values and COO indices into that memory allocation.
* Memory allocation is performed using the allocator that was specified with OrtApi::CreateSparseTensorAsOrtValue.
*
* \param[in,out] ort_value ::OrtValue to populate with data
* \param[in] data_mem_info serves to identify the location of the data to be copied. If the allocator specified
* at the creation time has memory info that is not the same as mem_info argument to this function a X-device copy will be performed.
* String data is assumed to be on CPU and will only be copied into a CPU allocated buffer.
* \param[in] values_shape pointer to values shape array
* \param[in] values_shape_len length of the values_shape
* \param[in] values pointer to an array of values. For strings, pass const char**.
* \param[in] indices_data pointer to a location of COO indices
* \param[in] indices_num number of COO indices
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(FillSparseTensorCoo, _Inout_ OrtValue* ort_value, _In_ const OrtMemoryInfo* data_mem_info,
_In_ const int64_t* values_shape, size_t values_shape_len, _In_ const void* values,
_In_ const int64_t* indices_data, size_t indices_num);
/**
* This fills populates an empty tensor that was created using OrtApi::CreateSparseTensorAsOrtValue.
* This will allocate required memory and copy the supplied NNZ values and CSR indices into that memory allocation.
* Memory allocation is performed using the allocator that was specified with OrtApi::CreateSparseTensorAsOrtValue.
*
* \param[in,out] ort_value ::OrtValue to populate with data
* \param[in] data_mem_info serves to identify the location of the data to be copied. If the allocator specified
* at the creation time has memory info that is not the same as mem_info argument to this function a X-device copy will be performed.
* String data is assumed to be on CPU and will only be copied into a CPU allocated buffer.
* \param[in] values_shape pointer to values shape array
* \param[in] values_shape_len length of the values_shape
* \param[in] values - pointer to an array of values. For strings, pass const char**.
* \param[in] inner_indices_data pointer to a location of CSR inner indices
* \param[in] inner_indices_num number of CSR inner indices
* \param[in] outer_indices_data pointer to a location of CSR outer indices
* \param[in] outer_indices_num number of CSR outer indices
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(FillSparseTensorCsr, _Inout_ OrtValue* ort_value, _In_ const OrtMemoryInfo* data_mem_info,
_In_ const int64_t* values_shape, size_t values_shape_len, _In_ const void* values,
_In_ const int64_t* inner_indices_data, size_t inner_indices_num,
_In_ const int64_t* outer_indices_data, size_t outer_indices_num);
/**
* This fills populates an empty tensor that was created using OrtApi::CreateSparseTensorAsOrtValue.
* This will allocate required memory and copy the supplied NNZ values and BlockSparse indices into that memory allocation.
* Memory allocation is performed using the allocator that was specified with OrtApi::CreateSparseTensorAsOrtValue.
*
* \param[in,out] ort_value ::OrtValue to populate with data
* \param[in] data_mem_info serves to identify the location of the data to be copied. If the allocator specified
* at the creation time has memory info that is not the same as mem_info argument to this function a X-device copy will be performed.
* String data is assumed to be on CPU and will only be copied into a CPU allocated buffer.
* \param[in] values_shape
* \param[in] values_shape_len
* \param[in] values structure with values information
* \param[in] indices_shape_data pointer to a location of indices shape
* \param[in] indices_shape_len length of the block sparse indices shape
* \param[in] indices_data pointer to a location of indices data. Shape will determine the length of the indices data.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(FillSparseTensorBlockSparse, _Inout_ OrtValue* ort_value, _In_ const OrtMemoryInfo* data_mem_info,
_In_ const int64_t* values_shape, size_t values_shape_len, _In_ const void* values,
_In_ const int64_t* indices_shape_data, size_t indices_shape_len,
_In_ const int32_t* indices_data);
/**
* Create an ::OrtValue with a sparse tensor. This is the first step.
* Next, use Use<Format>Indices() functions to supply sparse tensor with
* format specific indices data and set its sparse format to a specific enum value.
* This will not perform memory allocations. It will
* use supplied user buffer which should outlive the created sparse tensor.
* Use OrtApi::ReleaseValue to destroy the sparse tensor. It would not release the supplied values buffer.
* This function can not be used to map strings from the user allocated memory. Strings must always be copied
* and have UTF-8 encoding. Therefore, use OrtApi::CreateSparseTensorAsOrtValue above and then fill it with data
* using appropriate Make*() function.
*
* \param[in] info memory info where sparse values reside.
* \param[in,out] p_data pointer to a user allocated buffer with values. To create a full sparse tensor with no non-zero
* values, pass nullptr
* \param[in] dense_shape shape of the original dense tensor
* \param[in] dense_shape_len number of shape dimensions being passed
* \param[in] values_shape shape of the values data. To create a fully sparse tensor with no non-zero values,
* pass {0} shape.
* \param[in] values_shape_len number of values shape dimensions
* \param[in] type must be one of TENSOR_ELEMENT_DATA_TYPE_xxxx
* \param[out] out Should be freed by calling ReleaseValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(CreateSparseTensorWithValuesAsOrtValue, _In_ const OrtMemoryInfo* info, _Inout_ void* p_data,
_In_ const int64_t* dense_shape, size_t dense_shape_len,
_In_ const int64_t* values_shape, size_t values_shape_len,
ONNXTensorElementDataType type, _Outptr_ OrtValue** out);
/**
* This assigns Coo format indices to the SparseTensor that was created by
* OrtApi::CreateSparseTensorWithValuesAsOrtValue above. It also sets OrtSparseFormat to
* ORT_SPARSE_COO. This will not allocate any additional memory for data. The life span of
* indices_data buffer should eclipse the life span of this ::OrtValue.
*
* \param[in,out] ort_value ::OrtValue instance constructed with OrtApi::CreateSparseTensorWithValuesAsOrtValue
* \param[in,out] indices_data pointer to a user pre-allocated buffer or nullptr for fully sparse tensors.
* \param[in] indices_num number of COO indices. Should either be 0 for fully sparse tensors, be equal
* to the number of nnz values specified to OrtApi::CreateSparseTensorWithValuesAsOrtValue for 1-D {nnz} indices or
* be twice as number of nnz values for a 2-D indices {nnz, 2}
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(UseCooIndices, _Inout_ OrtValue* ort_value, _Inout_ int64_t* indices_data, size_t indices_num);
/**
* The assigns CSR format indices to the SparseTensor that was created by
* OrtApi::CreateSparseTensorWithValuesAsOrtValue above. It also sets OrtSparseFormat to
* ORT_SPARSE_CSRC. This will not allocate any additional memory for data. The life spans of
* inner_data and outer_data buffers should eclipse the life span of this ::OrtValue.
*
* \param[in,out] ort_value ::OrtValue instance constructed with OrtApi::CreateSparseTensorWithValuesAsOrtValue
* \param[in,out] inner_data pointer to a user pre-allocated buffer or nullptr for fully sparse tensors.
* \param[in] inner_num number of inner CSR indices. Should either be 0 for fully sparse tensors or be equal
* to the number of nnz values specified to OrtApi::CreateSparseTensorWithValuesAsOrtValue.
* \param[in,out] outer_data pointer to user pre-allocated buffer or nullptr for fully sparse tensors.
* \param[in] outer_num number of CSR outer indices. Should either be 0 for fully sparse tensors or
* equal to rows + 1 of the dense shape.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(UseCsrIndices, _Inout_ OrtValue* ort_value, _Inout_ int64_t* inner_data, size_t inner_num,
_Inout_ int64_t* outer_data, size_t outer_num);
/**
* The assigns BlockSparse format indices to the SparseTensor that was created by
* OrtApi::CreateSparseTensorWithValuesAsOrtValue above. It also sets OrtSparseFormat to
* ORT_SPARSE_BLOCK_SPARSE. This will not allocate any additional memory for data. The life span of
* indices_data buffer must eclipse the lifespan of this ::OrtValue.
*
* \param[in,out] ort_value OrtValue instance constructed with OrtApi::CreateSparseTensorWithValuesAsOrtValue
* \param[in] indices_shape pointer to indices shape. Use {0} for fully sparse tensors
* \param[in] indices_shape_len length of the indices shape
* \param[in,out] indices_data pointer to user pre-allocated buffer or nullptr for fully sparse tensors.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(UseBlockSparseIndices, _Inout_ OrtValue* ort_value, const int64_t* indices_shape, size_t indices_shape_len, _Inout_ int32_t* indices_data);
/** \brief Returns sparse tensor format enum iff a given ort value contains an instance of sparse tensor.
*
* \param[in] ort_value ::OrtValue that contains an instance of sparse tensor
* \param[out] out pointer to out parameter
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSparseTensorFormat, _In_ const OrtValue* ort_value, _Out_ enum OrtSparseFormat* out);
/** \brief Returns data type and shape of sparse tensor values (nnz) iff ::OrtValue contains a SparseTensor.
*
* \param[in] ort_value An ::OrtValue that contains a fully constructed sparse tensor
* \param[out] out Must be freed by OrtApi::ReleaseTensorTypeAndShapeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSparseTensorValuesTypeAndShape, _In_ const OrtValue* ort_value, _Outptr_ OrtTensorTypeAndShapeInfo** out);
/** \brief Returns numeric data for sparse tensor values (nnz). For string values use GetStringTensor*().
*
* \param[in] ort_value an instance of ::OrtValue containing sparse tensor
* \param[out] out returns a pointer to values data. Do not attempt to free this ptr.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSparseTensorValues, _In_ const OrtValue* ort_value, _Outptr_ const void** out);
/** \brief Returns data type, shape for the type of indices specified by indices_format.
*
* \param[in] ort_value ::OrtValue containing sparse tensor.
* \param[in] indices_format One of the indices formats. It is an error to request a format that the sparse
* tensor does not contain.
* \param[out] out an instance of ::OrtTensorTypeAndShapeInfo. Must be freed by OrtApi::ReleaseTensorTypeAndShapeInfo
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSparseTensorIndicesTypeShape, _In_ const OrtValue* ort_value, enum OrtSparseIndicesFormat indices_format, _Outptr_ OrtTensorTypeAndShapeInfo** out);
/** \brief Returns indices data for the type of the indices specified by indices_format
*
* \param[in] ort_value ::OrtValue containing sparse tensor.
* \param[in] indices_format One of the indices formats. It is an error to request a format that the sparse tensor does not contain.
* \param[out] num_indices Pointer to where the number of indices entries is returned
* \param[out] indices Returned pointer to the indices data. Do not free the returned pointer as it refers to internal data owned by the ::OrtValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetSparseTensorIndices, _In_ const OrtValue* ort_value, enum OrtSparseIndicesFormat indices_format, _Out_ size_t* num_indices, _Outptr_ const void** indices);
/// @}
/// \name OrtSessionOptions
/// @{
/**
* \brief Sets out to 1 iff an optional type OrtValue has an element, 0 otherwise (OrtValue is None)
* Use this API to find if the optional type OrtValue is None or not.
* If the optional type OrtValue is not None, use the OrtValue just like any other OrtValue.
* For example, if you get an OrtValue that corresponds to Optional(tensor) and
* if HasValue() returns true, use it as tensor and so on.
* \param[in] value Input OrtValue.
* \param[out] out indicating if the input OrtValue contains data (1) or if it is a None (0)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(HasValue, _In_ const OrtValue* value, _Out_ int* out);
/// @}
/// \name OrtKernelContext
/// Custom operator APIs.
/// @{
/** \brief Used for custom operators, gets the GPU compute stream to use to launch the custom a GPU kernel
* \see ::OrtCustomOp
* \param[in] context OrtKernelContext instance
* \param[out] out Returns pointer to a GPU compute stream that can be used to launch the custom GPU kernel.
* If retrieving the GPU compute stream is not relevant (GPU not enabled in the build, kernel partitioned to
* some other EP), then a nullptr is returned as the output param.
* Do not free or mutate the returned pointer as it refers to internal data owned by the underlying session.
* Only use it for custom kernel launching.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelContext_GetGPUComputeStream, _In_ const OrtKernelContext* context, _Outptr_ void** out);
/// @}
/// \name GetTensorMemoryInfo
/// @{
/** \brief Returns a pointer to the ::OrtMemoryInfo of a Tensor
* \param[in] value ::OrtValue containing tensor.
* \param[out] mem_info ::OrtMemoryInfo of the tensor. Do NOT free the returned pointer. It is valid for the lifetime of the ::OrtValue
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetTensorMemoryInfo, _In_ const OrtValue* value, _Out_ const OrtMemoryInfo** mem_info);
/// @}
/// \name GetExecutionProviderApi
/// @{
/** \brief Get a pointer to the requested version of the Execution Provider specific
* API extensions to the OrtApi
* \param[in] provider_name The name of the execution provider name. Currently only the following
* values are supported: "DML".
* \param[in] version Must be ::ORT_API_VERSION.
* \param[out] provider_api A void pointer containing a reference to the execution provider versioned api structure.
* For example, the provider_api pointer can be cast to the OrtDmlApi* when the provider_name is "DML".
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(GetExecutionProviderApi, _In_ const char* provider_name, _In_ uint32_t version, _Outptr_ const void** provider_api);
/// @}
/// \name SessionOptions
/// @{
/** \brief Set custom thread creation function
*
* \param[in] options Session options
* \param[in] ort_custom_create_thread_fn Custom thread creation function
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsSetCustomCreateThreadFn, _Inout_ OrtSessionOptions* options, _In_ OrtCustomCreateThreadFn ort_custom_create_thread_fn);
/** \brief Set creation options for custom thread
*
* \param[in] options Session options
* \param[in] ort_custom_thread_creation_options Custom thread creation options (can be nullptr)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsSetCustomThreadCreationOptions, _Inout_ OrtSessionOptions* options, _In_ void* ort_custom_thread_creation_options);
/** \brief Set custom thread join function
*
* \param[in] options Session options
* \param[in] ort_custom_join_thread_fn Custom join thread function, must not be nullptr when ort_custom_create_thread_fn is set
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SessionOptionsSetCustomJoinThreadFn, _Inout_ OrtSessionOptions* options, _In_ OrtCustomJoinThreadFn ort_custom_join_thread_fn);
/// @}
/// \name OrtThreadingOptions
/// @{
/** \brief Set custom thread creation function for global thread pools
*
* \param[inout] tp_options
* \param[in] ort_custom_create_thread_fn Custom thread creation function
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalCustomCreateThreadFn, _Inout_ OrtThreadingOptions* tp_options, _In_ OrtCustomCreateThreadFn ort_custom_create_thread_fn);
/** \brief Set custom thread creation options for global thread pools
*
* \param[inout] tp_options
* \param[in] ort_custom_thread_creation_options Custom thread creation options (can be nullptr)
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalCustomThreadCreationOptions, _Inout_ OrtThreadingOptions* tp_options, _In_ void* ort_custom_thread_creation_options);
/** \brief Set custom thread join function for global thread pools
*
* \param[inout] tp_options
* \param[in] ort_custom_join_thread_fn Custom thread join function, must not be nullptr when global ort_custom_create_thread_fn is set
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SetGlobalCustomJoinThreadFn, _Inout_ OrtThreadingOptions* tp_options, _In_ OrtCustomJoinThreadFn ort_custom_join_thread_fn);
/// @}
/** \brief Synchronize bound inputs. The call may be necessary for some providers, such as cuda,
* in case the system that allocated bound memory operated on a different stream. However, the
* operation is provider specific and could be a no-op.
*
* \param[inout] binding_ptr
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SynchronizeBoundInputs, _Inout_ OrtIoBinding* binding_ptr);
/** \brief Synchronize bound outputs. The call may be necessary for some providers, such as cuda,
* in case the system that allocated bound memory operated on a different stream. However, the
* operation is provider specific and could be a no-op.
*
* \param[inout] binding_ptr
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(SynchronizeBoundOutputs, _Inout_ OrtIoBinding* binding_ptr);
/// \name OrtSessionOptions
/// @{
/** \brief Append CUDA execution provider to the session options
*
* If CUDA is not available (due to a non CUDA enabled build), this function will return failure.
*
* This is slightly different from OrtApi::SessionOptionsAppendExecutionProvider_CUDA, it takes an
* ::OrtCUDAProviderOptions which is publicly defined. This takes an opaque ::OrtCUDAProviderOptionsV2
* which must be created with OrtApi::CreateCUDAProviderOptions.
*
* For OrtApi::SessionOptionsAppendExecutionProvider_CUDA, the user needs to instantiate ::OrtCUDAProviderOptions
* as well as allocate/release buffers for some members of ::OrtCUDAProviderOptions.
* Here, OrtApi::CreateCUDAProviderOptions and Ortapi::ReleaseCUDAProviderOptions will do the memory management for you.
*
* \param[in] options
* \param[in] cuda_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.11.
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_CUDA_V2,
_In_ OrtSessionOptions* options, _In_ const OrtCUDAProviderOptionsV2* cuda_options);
/// @}
/// \name OrtCUDAProviderOptionsV2
/// @{
/** \brief Create an OrtCUDAProviderOptionsV2
*
* \param[out] out Newly created ::OrtCUDAProviderOptionsV2. Must be released with OrtApi::ReleaseCudaProviderOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.11.
*/
ORT_API2_STATUS(CreateCUDAProviderOptions, _Outptr_ OrtCUDAProviderOptionsV2** out);
/** \brief Set options in a CUDA Execution Provider.
*
* Please refer to https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#configuration-options
* to know the available keys and values. Key should be in null terminated string format of the member of ::OrtCUDAProviderOptionsV2
* and value should be its related range.
*
* For example, key="device_id" and value="0"
*
* \param[in] cuda_options
* \param[in] provider_options_keys Array of UTF-8 null-terminated string for provider options keys
* \param[in] provider_options_values Array of UTF-8 null-terminated string for provider options values
* \param[in] num_keys Number of elements in the `provider_option_keys` and `provider_options_values` arrays
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.11.
*/
ORT_API2_STATUS(UpdateCUDAProviderOptions, _Inout_ OrtCUDAProviderOptionsV2* cuda_options,
_In_reads_(num_keys) const char* const* provider_options_keys,
_In_reads_(num_keys) const char* const* provider_options_values,
_In_ size_t num_keys);
/**
* Get serialized CUDA provider options string.
*
* For example, "device_id=0;arena_extend_strategy=0;......"
*
* \param cuda_options - OrtCUDAProviderOptionsV2 instance
* \param allocator - a ptr to an instance of OrtAllocator obtained with CreateAllocator() or GetAllocatorWithDefaultOptions()
* the specified allocator will be used to allocate continuous buffers for output strings and lengths.
* \param ptr - is a UTF-8 null terminated string allocated using 'allocator'. The caller is responsible for using the same allocator to free it.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.11.
*/
ORT_API2_STATUS(GetCUDAProviderOptionsAsString, _In_ const OrtCUDAProviderOptionsV2* cuda_options, _Inout_ OrtAllocator* allocator, _Outptr_ char** ptr);
/** \brief Release an ::OrtCUDAProviderOptionsV2
*
* \note This is an exception in the naming convention of other Release* functions, as the name of the method does not have the V2 suffix, but the type does
*
* \since Version 1.11.
*/
void(ORT_API_CALL* ReleaseCUDAProviderOptions)(_Frees_ptr_opt_ OrtCUDAProviderOptionsV2* input);
/// @}
/** \brief Append MIGraphX provider to session options
*
* If MIGraphX is not available (due to a non MIGraphX enabled build, or if MIGraphX is not installed on the system), this function will return failure.
*
* \param[in] options
* \param[in] migraphx_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.11.
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_MIGraphX,
_In_ OrtSessionOptions* options, _In_ const OrtMIGraphXProviderOptions* migraphx_options);
/** \brief Replace initialized Tensors with external data with the data provided in initializers.
*
* The function will find the initialized TensorProtos with external data in the graph with the provided names and
* replace them with the provided tensors. The API verifies that the TensorProto being replaced
* has an external data reference and has the same name, dimensions and data type as its replacement. The replacement
* will occur before any of the optimizations take place. The data will be copied into the graph
* since TensorProto can't refer to the user provided buffers.
*
* Once the model has been loaded, the OrtValue(s) added to SessionOptions instance will be removed
* from the internal SessionOptions copy to save memory, the user provided buffers can then be deallocated
* and the SessionOptions instance that refers to them can be destroyed.
*
* \param[in] options
* \param[in] initializer_names Array of null terminated UTF-8 encoded strings of the initializers names.
* \param[in] initializers Array of ::OrtValue type
* \param[in] initializers_num Number of elements in the initializer_names and initializers
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.12.
*/
ORT_API2_STATUS(AddExternalInitializers, _In_ OrtSessionOptions* options,
_In_reads_(input_len) const char* const* initializer_names,
_In_reads_(input_len) const OrtValue* const* initializers, size_t initializers_num);
/** \brief: Create attribute of onnxruntime operator
*
* \param[in] name Name of the attribute
* \param[in] data Data content of the attribute
* \param[in] len Number of bytes stored in data
* \param[in] type Data type
* \param[out] op_attr Attribute that has been created, which must be released by OrtApi::ReleaseOpAttr
*
* \since Version 1.12.
*/
ORT_API2_STATUS(CreateOpAttr,
_In_ const char* name,
_In_ const void* data,
_In_ int len,
_In_ OrtOpAttrType type,
_Outptr_ OrtOpAttr** op_attr);
/* \brief: Release op attribute
*
* \param[in] opAttr Attribute created by OrtApi::CreateOpAttr
*
* \since Version 1.12.
*/
ORT_CLASS_RELEASE(OpAttr);
/** \brief: Create onnxruntime native operator
*
* \param[in] info Kernel info
* \param[in] op_name Operator name
* \param[in] domain Operator domain
* \param[in] version Operator opset version
* \param[in] type_constraint_names Name of the type contraints, such as "T" or "T1"
* \param[in] type_constraint_values Type of each contraints
* \param[in] type_constraint_count Number of contraints
* \param[in] attr_values Attributes used to initialize the operator
* \param[in] attr_count Number of the attributes
* \param[in] input_count Number of inputs
* \param[in] output_count Number of outputs
* \param[out] ort_op Operator that has been created
*
* \since Version 1.12.
*/
ORT_API2_STATUS(CreateOp,
_In_ const OrtKernelInfo* info,
_In_ const char* op_name,
_In_ const char* domain,
_In_ int version,
_In_opt_ const char** type_constraint_names,
_In_opt_ const ONNXTensorElementDataType* type_constraint_values,
_In_opt_ int type_constraint_count,
_In_opt_ const OrtOpAttr* const* attr_values,
_In_opt_ int attr_count,
_In_ int input_count,
_In_ int output_count,
_Outptr_ OrtOp** ort_op);
/** \brief: Invoke the operator created by OrtApi::CreateOp
* The inputs must follow the order as specified in onnx specification
*
* \param[in] context Kernel context
* \param[in] ort_op Operator that has been created
* \param[in] input_values Array of inputs
* \param[in] input_count Number of inputs
* \param[in] output_values Array of outputs
* \param[in] output_count Number of outputs
*
* \since Version 1.12.
*/
ORT_API2_STATUS(InvokeOp,
_In_ const OrtKernelContext* context,
_In_ const OrtOp* ort_op,
_In_ const OrtValue* const* input_values,
_In_ int input_count,
_Inout_ OrtValue* const* output_values,
_In_ int output_count);
/* \brief: Release an onnxruntime operator
*
* \param[in] Op Operator created by OrtApi::CreateOp
*
* \since Version 1.12.
*/
ORT_CLASS_RELEASE(Op);
/** \brief: Append execution provider to the session options.
* \param[in] options
* \param[in] provider_name - provider to add.
* \param[in] provider_options_keys - keys to configure the provider options
* \param[in] provider_options_values - values to configure the provider options
* \param[in] num_keys - number of keys passed in
*
* Currently supported providers:
* SNPE
* XNNPACK
*
* Note: If an execution provider has a dedicated SessionOptionsAppendExecutionProvider_<provider name> function
* that should be used to add it.
*
* SNPE supported keys:
* "runtime": SNPE runtime engine, options: "CPU", "CPU_FLOAT32", "GPU", "GPU_FLOAT32_16_HYBRID", "GPU_FLOAT16",
* "DSP", "DSP_FIXED8_TF", "AIP_FIXED_TF", "AIP_FIXED8_TF".
* Mapping to SNPE Runtime_t definition: CPU, CPU_FLOAT32 => zdl::DlSystem::Runtime_t::CPU;
* GPU, GPU_FLOAT32_16_HYBRID => zdl::DlSystem::Runtime_t::GPU;
* GPU_FLOAT16 => zdl::DlSystem::Runtime_t::GPU_FLOAT16;
* DSP, DSP_FIXED8_TF => zdl::DlSystem::Runtime_t::DSP.
* AIP_FIXED_TF, AIP_FIXED8_TF => zdl::DlSystem::Runtime_t::AIP_FIXED_TF.
* "priority": execution priority, options: "low", "normal".
* "buffer_type": ITensor or user buffers, options: "ITENSOR", user buffer with different types - "TF8", "TF16", "UINT8", "FLOAT".
* "ITENSOR" -- default, ITensor which is float only.
* "TF8" -- quantized model required, "FLOAT" -- for both quantized or non-quantized model
* If SNPE is not available (due to a non Snpe enabled build or its dependencies not being installed), this function will fail.
*
* XNNPACK supported keys:
* "intra_op_num_threads": number of thread-pool size to use for XNNPACK execution provider.
* default value is 0, which means to use the session thread-pool size.
*
* \since Version 1.12.
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider, _In_ OrtSessionOptions* options,
_In_ const char* provider_name,
_In_reads_(num_keys) const char* const* provider_options_keys,
_In_reads_(num_keys) const char* const* provider_options_values,
_In_ size_t num_keys);
/* \brief: Get a copy of kernel info
*
* \param[in] info Kernel info
* \param[out] info_copy Copy of kernel info
*
* \since Version 1.12.
*/
ORT_API2_STATUS(CopyKernelInfo,
_In_ const OrtKernelInfo* info,
_Outptr_ OrtKernelInfo** info_copy);
/* \brief: Release kernel info
*
* \param[in] KernelInfo A copy of kernel info returned by CopyKernelInfo
*
* \since Version 1.12.
*/
ORT_CLASS_RELEASE(KernelInfo);
/* \brief: Get the training C Api
*
* \since Version 1.13
*/
const OrtTrainingApi*(ORT_API_CALL* GetTrainingApi)(uint32_t version)NO_EXCEPTION;
/** \brief Append CANN provider to session options
*
* If CANN is not available (due to a non CANN enabled build, or if CANN is not installed on the system), this function will return failure.
*
* \param[in] options
* \param[in] cann_options
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.13.
*/
ORT_API2_STATUS(SessionOptionsAppendExecutionProvider_CANN,
_In_ OrtSessionOptions* options, _In_ const OrtCANNProviderOptions* cann_options);
/** \brief Create an OrtCANNProviderOptions
*
* \param[out] out created ::OrtCANNProviderOptions. Must be released with OrtApi::ReleaseCANNProviderOptions
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.13.
*/
ORT_API2_STATUS(CreateCANNProviderOptions, _Outptr_ OrtCANNProviderOptions** out);
/** \brief Set options in a CANN Execution Provider.
*
* \param[in] cann_options
* \param[in] provider_options_keys Array of UTF-8 null-terminated string for provider options keys
* \param[in] provider_options_values Array of UTF-8 null-terminated string for provider options values
* \param[in] num_keys Number of elements in the `provider_option_keys` and `provider_options_values` arrays
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.13.
*/
ORT_API2_STATUS(UpdateCANNProviderOptions, _Inout_ OrtCANNProviderOptions* cann_options,
_In_reads_(num_keys) const char* const* provider_options_keys,
_In_reads_(num_keys) const char* const* provider_options_values,
_In_ size_t num_keys);
/** \brief Get serialized CANN provider options string.
*
* \param[in] cann_options OrtCANNProviderOptions instance
* \param[in] allocator a ptr to an instance of OrtAllocator obtained with CreateAllocator()
* or GetAllocatorWithDefaultOptions(), the specified allocator will be used to allocate
* continuous buffers for output strings and lengths.
* \param[out] ptr is a UTF-8 null terminated string allocated using 'allocator'.
* The caller is responsible for using the same allocator to free it.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*
* \since Version 1.13.
*/
ORT_API2_STATUS(GetCANNProviderOptionsAsString, _In_ const OrtCANNProviderOptions* cann_options,
_Inout_ OrtAllocator* allocator, _Outptr_ char** ptr);
/** \brief Release an OrtCANNProviderOptions
*
* \param[in] the pointer of OrtCANNProviderOptions which will been deleted
*
* \since Version 1.13.
*/
void(ORT_API_CALL* ReleaseCANNProviderOptions)(_Frees_ptr_opt_ OrtCANNProviderOptions* input);
/* \brief Get OrtDevice type from MemoryInfo
*
* \since Version 1.14
*/
void(ORT_API_CALL* MemoryInfoGetDeviceType)(_In_ const OrtMemoryInfo* ptr, _Out_ OrtMemoryInfoDeviceType* out);
/* \brief Update the OrtEnv instance with custom log severity level
*
* \param[in] ort_env The OrtEnv instance being used
* \param[in] log_severity_level The log severity level.
*
* \since Version 1.14.
*/
ORT_API2_STATUS(UpdateEnvWithCustomLogLevel, _In_ OrtEnv* ort_env, OrtLoggingLevel log_severity_level);
/* \brief Set affinities for intra op threads
*
* Affinity string follows format:
* logical_processor_id,logical_processor_id;logical_processor_id,logical_processor_id
* Semicolon isolates configurations among threads, while comma split processors where ith thread expected to attach to.
* e.g. 1,2,3;4,5
* specifies affinities for two threads, with the 1st thread attach to the 1st, 2nd, and 3rd processor, and 2nd thread to the 4th and 5th.
* To ease the configuration, an "interval" is also allowed:
* e.g. 1-8;8-16;17-24
* orders that the 1st thread runs on first eight processors, 2nd thread runs on next eight processors, and so forth.
* Note:
* 1. Once set, the number of thread affinities must equal to intra_op_num_threads - 1,
* ort does not set affinity on the main thread which is started and managed by the calling app;
* 2. For windows, ort will infer the group id from a logical processor id, for example, assuming there are two groups with each has 64 logical processors,
* an id of 64 will be inferred as the last processor of the 1st group, while 65 will be interpreted as the 1st processor of the second group.
* Hence 64-65 is an invalid configuration, because a windows thread cannot be attached to processors across group boundary.
*
* \since Version 1.14
*/
ORT_API2_STATUS(SetGlobalIntraOpThreadAffinity, _Inout_ OrtThreadingOptions* tp_options, const char* affinity_string);
/** \brief Register custom ops from a shared library.
*
* Loads a shared library (.dll on windows, .so on linux, etc) named 'library_name' and looks for this entry point:
* OrtStatus* RegisterCustomOps(OrtSessionOptions * options, const OrtApiBase* api);
* It then passes in the provided session options to this function along with the api base.
*
* The handle to the loaded library is automatically released by ORT when the last OrtSession that references the
* library handle is released. If no OrtSession is created, then the library handle is released when the provided
* OrtSessionOptions is released.
*
* \param[in] options The session options.
* \param[in] library_name The name of the shared library to load and register. Refer to OS-specific dynamic library
* loading utilities (e.g., LoadLibraryEx on Windows or dlopen on Linux/MacOS) for information
* on the format of library names and search paths.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(RegisterCustomOpsLibrary_V2, _Inout_ OrtSessionOptions* options, _In_ const ORTCHAR_T* library_name);
/** \brief Register custom ops by calling a RegisterCustomOpsFn function.
*
* Searches for registration_func_name and if found calls it.
*
* The library containing the function must either be linked against or previously loaded by the executable.
*
* If you want ONNX Runtime to load the library and manage its lifetime, use RegisterCustomOpsLibrary_V2.
*
* RegisterCustomOpsUsingFunction can be used in scenarios where it may not be possible for ONNX Runtime to load
* the library from a path. e.g. mobile platforms where the library must be linked into the app.
*
* The registration function must have the signature of RegisterCustomOpsFn:
* OrtStatus* (*fn)(OrtSessionOptions* options, const OrtApiBase* api);
*
* See https://onnxruntime.ai/docs/reference/operators/add-custom-op.html for details on how the registration
* function should be implemented.
*
* \param[in] options OrtSessionOptions that is passed through as the first argument in the call to the
* registration function.
* \param[in] registration_func_name Name of registration function to use.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(RegisterCustomOpsUsingFunction, _Inout_ OrtSessionOptions* options,
_In_ const char* registration_func_name);
/// @}
/// \name OrtKernelInfo
/// Custom operator APIs.
/// @{
/** \brief Get the number of inputs from ::OrtKernelInfo.
*
* Used in the CreateKernel callback of an OrtCustomOp to query the number of inputs
* during kernel/session creation.
*
* \param[in] info Instance of ::OrtKernelInfo.
* \param[out] out Pointer to variable assigned with the result on success.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetInputCount, _In_ const OrtKernelInfo* info, _Out_ size_t* out);
/** \brief Get the number of outputs from ::OrtKernelInfo.
*
* Used in the CreateKernel callback of an OrtCustomOp to query the number of outputs
* during kernel/session creation.
*
* \param[in] info Instance of ::OrtKernelInfo.
* \param[out] out Pointer to variable assigned with the result on success.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetOutputCount, _In_ const OrtKernelInfo* info, _Out_ size_t* out);
/** \brief Get the name of a ::OrtKernelInfo's input.
*
* Used in the CreateKernel callback of an OrtCustomOp to query an input's name
* during kernel/session creation.
*
* If `out` is nullptr, the value of `size` is set to the size of the name
* string (including null-terminator), and a success status is returned.
*
* If the `size` parameter is greater than or equal to the name string's size,
* the value of `size` is set to the true size of the string (including null-terminator),
* the provided memory is filled with the string's contents, and a success status is returned.
*
* If the `size` parameter is less than the actual string's size and `out`
* is not nullptr, the value of `size` is set to the true size of the string
* and a failure status is returned.
*
* \param[in] info An instance of ::OrtKernelInfo.
* \param[in] index The index of the input name to get. Returns a failure status if out-of-bounds.
* \param[out] out Memory location into which to write the UTF-8 null-terminated string representing the input's name.
* \param[in,out] size Pointer to the size of the `out` buffer. See above comments for details.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetInputName, _In_ const OrtKernelInfo* info, size_t index, _Out_ char* out,
_Inout_ size_t* size);
/** \brief Get the name of a ::OrtKernelInfo's output.
*
* Used in the CreateKernel callback of an OrtCustomOp to query an output's name
* during kernel/session creation.
*
* If `out` is nullptr, the value of `size` is set to the size of the name
* string (including null-terminator), and a success status is returned.
*
* If the `size` parameter is greater than or equal to the name string's size,
* the value of `size` is set to the true size of the string (including null-terminator),
* the provided memory is filled with the string's contents, and a success status is returned.
*
* If the `size` parameter is less than the actual string's size and `out`
* is not nullptr, the value of `size` is set to the true size of the string
* and a failure status is returned.
*
* \param[in] info An instance of ::OrtKernelInfo.
* \param[in] index The index of the output name to get. Returns a failure status if out-of-bounds.
* \param[out] out Memory location into which to write the UTF-8 null-terminated string representing the output's
* name.
* \param[in,out] size Pointer to the size of the `out` buffer. See above comments for details.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetOutputName, _In_ const OrtKernelInfo* info, size_t index, _Out_ char* out,
_Inout_ size_t* size);
/** \brief Get the type information for a ::OrtKernelInfo's input.
*
* Used in the CreateKernel callback of an OrtCustomOp to query the shape and type information
* of an input during kernel/session creation.
*
* \param[in] info An instance of ::OrtKernelInfo.
* \param[out] type_info Pointer set to the resulting ::OrtTypeInfo. Must be freed with OrtApi::ReleaseTypeInfo.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetInputTypeInfo, _In_ const OrtKernelInfo* info, size_t index,
_Outptr_ OrtTypeInfo** type_info);
/** \brief Get the type information for a ::OrtKernelInfo's output.
*
* Used in the CreateKernel callback of an OrtCustomOp to query the shape and type information
* of an output during kernel/session creation.
*
* \param[in] info An instance of ::OrtKernelInfo.
* \param[out] type_info Pointer set to the resulting ::OrtTypeInfo. Must be freed with OrtApi::ReleaseTypeInfo.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(KernelInfo_GetOutputTypeInfo, _In_ const OrtKernelInfo* info, size_t index,
_Outptr_ OrtTypeInfo** type_info);
/** \brief Get a ::OrtValue tensor stored as an attribute in the graph node.
*
* Used in the CreateKernel callback of an OrtCustomOp to get a tensor attribute.
*
* \param[in] info ::OrtKernelInfo instance.
* \param[in] name UTF-8 null-terminated string representing the attribute's name.
* \param[in] allocator Allocator used to allocate the internal tensor state.
* \param[out] out Returns newly created ::OrtValue. Must be freed with OrtApi::ReleaseValue,
* which will also free internal tensor state allocated with the provided allocator.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
*/
ORT_API2_STATUS(KernelInfoGetAttribute_tensor, _In_ const OrtKernelInfo* info, _In_z_ const char* name,
_Inout_ OrtAllocator* allocator, _Outptr_ OrtValue** out);
/// @}
/// \name OrtSessionOptions
/// Custom operator APIs
/// @{
/** \brief Checks if the given session configuration entry exists.
*
* The config_key formats are defined in onnxruntime_session_options_config_keys.h
*
* Can be used in a custom operator library to check for session configuration entries
* that target one or more custom operators in the library. Example: The config entry
* custom_op.myop.some_key targets a custom op named "myop".
*
* \param[in] options The ::OrtSessionOptions instance.
* \param[in] config_key A null-terminated UTF-8 string representation of the configuration key.
* \param[out] out Pointer set to 1 if the entry exists and 0 otherwise.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(HasSessionConfigEntry, _In_ const OrtSessionOptions* options,
_In_z_ const char* config_key, _Out_ int* out);
/** \brief Get a session configuration value.
*
* Returns a failure status if the configuration key does not exist.
* The config_key and the format of config_value are defined in onnxruntime_session_options_config_keys.h
*
* If `config_value` is nullptr, the value of `size` is set to the true size of the string
* value (including null-terminator), and a success status is returned.
*
* If the `size` parameter is greater than or equal to the actual string value's size,
* the value of `size` is set to the true size of the string value, the provided memory
* is filled with the value's contents, and a success status is returned.
*
* If the `size` parameter is less than the actual string value's size and `config_value`
* is not nullptr, the value of `size` is set to the true size of the string value
* and a failure status is returned.
*
* Can be used in a custom operator library to get session configuration entries
* that target one or more custom operators in the library. Example: The config entry
* custom_op.myop.some_key targets a custom op named "myop".
*
* \param[in] options The session options.
* \param[in] config_key A null-terminated UTF-8 string representation of the config key.
* \param[in] config_value Pointer to memory where the null-terminated UTF-8 string value will be stored.
* \param[in,out] size Pointer to the size of the `config_value` buffer. See above comments for details.
*
* \snippet{doc} snippets.dox OrtStatus Return Value
* \since Version 1.14
*/
ORT_API2_STATUS(GetSessionConfigEntry, _In_ const OrtSessionOptions* options,
_In_z_ const char* config_key, _Out_ char* config_value, _Inout_ size_t* size);
/// @}
#ifdef __cplusplus
OrtApi(const OrtApi&) = delete; // Prevent users from accidentally copying the API structure, it should always be passed as a pointer
#endif
};
/*
* Steps to use a custom op:
* 1 Create an OrtCustomOpDomain with the domain name used by the custom ops
* 2 Create an OrtCustomOp structure for each op and add them to the domain
* 3 Call OrtAddCustomOpDomain to add the custom domain of ops to the session options
*/
// Specifies some characteristics of inputs/outputs of custom ops:
// Specify if the inputs/outputs are one of:
// 1) Non-optional (input/output must be present in the node)
// 2) Optional (input/output may be absent in the node)
// 3) Variadic: A variadic input or output specifies N (i.e., the minimum arity) or more operands.
// Only the last input or output of a custom op may be marked as variadic.
// The homogeneity of the variadic input or output determines whether all operands must be of the same
// tensor element type.
typedef enum OrtCustomOpInputOutputCharacteristic {
INPUT_OUTPUT_REQUIRED = 0,
INPUT_OUTPUT_OPTIONAL,
INPUT_OUTPUT_VARIADIC,
} OrtCustomOpInputOutputCharacteristic;
/*
* The OrtCustomOp structure defines a custom op's schema and its kernel callbacks. The callbacks are filled in by
* the implementor of the custom op.
*/
struct OrtCustomOp {
uint32_t version; // Must be initialized to ORT_API_VERSION
// This callback creates the kernel, which is a user defined parameter that is passed to the Kernel* callbacks below.
void*(ORT_API_CALL* CreateKernel)(_In_ const struct OrtCustomOp* op, _In_ const OrtApi* api,
_In_ const OrtKernelInfo* info);
// Returns the name of the op
const char*(ORT_API_CALL* GetName)(_In_ const struct OrtCustomOp* op);
// Returns the type of the execution provider, return nullptr to use CPU execution provider
const char*(ORT_API_CALL* GetExecutionProviderType)(_In_ const struct OrtCustomOp* op);
// Returns the count and types of the input & output tensors
ONNXTensorElementDataType(ORT_API_CALL* GetInputType)(_In_ const struct OrtCustomOp* op, _In_ size_t index);
size_t(ORT_API_CALL* GetInputTypeCount)(_In_ const struct OrtCustomOp* op);
ONNXTensorElementDataType(ORT_API_CALL* GetOutputType)(_In_ const struct OrtCustomOp* op, _In_ size_t index);
size_t(ORT_API_CALL* GetOutputTypeCount)(_In_ const struct OrtCustomOp* op);
// Op kernel callbacks
void(ORT_API_CALL* KernelCompute)(_In_ void* op_kernel, _In_ OrtKernelContext* context);
void(ORT_API_CALL* KernelDestroy)(_In_ void* op_kernel);
// Returns the characteristics of the input & output tensors
OrtCustomOpInputOutputCharacteristic(ORT_API_CALL* GetInputCharacteristic)(_In_ const struct OrtCustomOp* op, _In_ size_t index);
OrtCustomOpInputOutputCharacteristic(ORT_API_CALL* GetOutputCharacteristic)(_In_ const struct OrtCustomOp* op, _In_ size_t index);
// Returns the memory type of the input tensors. This API allows the custom op
// to place the inputs on specific devices. By default, it returns
// OrtMemTypeDefault, which means the input is placed on the default device for
// the execution provider. If the inputs need to be with different memory tyeps,
// this function can be overridden to return the specific memory types.
OrtMemType(ORT_API_CALL* GetInputMemoryType)(_In_ const struct OrtCustomOp* op, _In_ size_t index);
// Returns the minimum number of input arguments expected for the variadic input.
// Applicable only for custom ops that have a variadic input.
int(ORT_API_CALL* GetVariadicInputMinArity)(_In_ const struct OrtCustomOp* op);
// Returns true (non-zero) if all arguments of a variadic input have to be of the same type (homogeneous),
// and false (zero) otherwise.
// Applicable only for custom ops that have a variadic input.
int(ORT_API_CALL* GetVariadicInputHomogeneity)(_In_ const struct OrtCustomOp* op);
// Returns the minimum number of output values expected for the variadic output.
// Applicable only for custom ops that have a variadic output.
int(ORT_API_CALL* GetVariadicOutputMinArity)(_In_ const struct OrtCustomOp* op);
// Returns true (non-zero) if all outputs values of a variadic output have to be of the same type (homogeneous),
// and false (zero) otherwise.
// Applicable only for custom ops that have a variadic output.
int(ORT_API_CALL* GetVariadicOutputHomogeneity)(_In_ const struct OrtCustomOp* op);
};
/*
* This is the old way to add the CUDA provider to the session, please use SessionOptionsAppendExecutionProvider_CUDA above to access the latest functionality
* This function always exists, but will only succeed if Onnxruntime was built with CUDA support and the CUDA provider shared library exists
*
* \param device_id CUDA device id, starts from zero.
*/
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_CUDA, _In_ OrtSessionOptions* options, int device_id);
/*
* This is the old way to add the MIGraphX provider to the session, please use
* SessionOptionsAppendExecutionProvider_MIGraphX above to access the latest functionality
* This function always exists, but will only succeed if Onnxruntime was built with
* HIP support and the MIGraphX provider shared library exists
*
* \param device_id HIP device id, starts from zero.
*/
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_MIGraphX, _In_ OrtSessionOptions* options, int device_id);
#ifdef __cplusplus
}
#endif
//! @}
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// Summary: The Ort C++ API is a header only wrapper around the Ort C API.
//
// The C++ API simplifies usage by returning values directly instead of error codes, throwing exceptions on errors
// and automatically releasing resources in the destructors. The primary purpose of C++ API is exception safety so
// all the resources follow RAII and do not leak memory.
//
// Each of the C++ wrapper classes holds only a pointer to the C internal object. Treat them like smart pointers.
// To create an empty object, pass 'nullptr' to the constructor (for example, Env e{nullptr};). However, you can't use them
// until you assign an instance that actually holds an underlying object.
//
// For Ort objects only move assignment between objects is allowed, there are no copy constructors.
// Some objects have explicit 'Clone' methods for this purpose.
//
// ConstXXXX types are copyable since they do not own the underlying C object, so you can pass them to functions as arguments
// by value or by reference. ConstXXXX types are restricted to const only interfaces.
//
// UnownedXXXX are similar to ConstXXXX but also allow non-const interfaces.
//
// The lifetime of the corresponding owning object must eclipse the lifetimes of the ConstXXXX/UnownedXXXX types. They exists so you do not
// have to fallback to C types and the API with the usual pitfalls. In general, do not use C API from your C++ code.
#pragma once
#include "onnxruntime_c_api.h"
#include <cstddef>
#include <array>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#include <unordered_map>
#include <utility>
#include <type_traits>
#ifdef ORT_NO_EXCEPTIONS
#include <iostream>
#endif
/** \brief All C++ Onnxruntime APIs are defined inside this namespace
*
*/
namespace Ort {
/** \brief All C++ methods that can fail will throw an exception of this type
*
* If <tt>ORT_NO_EXCEPTIONS</tt> is defined, then any error will result in a call to abort()
*/
struct Exception : std::exception {
Exception(std::string&& string, OrtErrorCode code) : message_{std::move(string)}, code_{code} {}
OrtErrorCode GetOrtErrorCode() const { return code_; }
const char* what() const noexcept override { return message_.c_str(); }
private:
std::string message_;
OrtErrorCode code_;
};
#ifdef ORT_NO_EXCEPTIONS
// The #ifndef is for the very special case where the user of this library wants to define their own way of handling errors.
// NOTE: This header expects control flow to not continue after calling ORT_CXX_API_THROW
#ifndef ORT_CXX_API_THROW
#define ORT_CXX_API_THROW(string, code) \
do { \
std::cerr << Ort::Exception(string, code) \
.what() \
<< std::endl; \
abort(); \
} while (false)
#endif
#else
#define ORT_CXX_API_THROW(string, code) \
throw Ort::Exception(string, code)
#endif
// This is used internally by the C++ API. This class holds the global variable that points to the OrtApi,
// it's in a template so that we can define a global variable in a header and make
// it transparent to the users of the API.
template <typename T>
struct Global {
static const OrtApi* api_;
};
// If macro ORT_API_MANUAL_INIT is defined, no static initialization will be performed. Instead, user must call InitApi() before using it.
template <typename T>
#ifdef ORT_API_MANUAL_INIT
const OrtApi* Global<T>::api_{};
inline void InitApi() { Global<void>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); }
// Used by custom operator libraries that are not linked to onnxruntime. Sets the global API object, which is
// required by C++ APIs.
//
// Example mycustomop.cc:
//
// #define ORT_API_MANUAL_INIT
// #include <onnxruntime_cxx_api.h>
// #undef ORT_API_MANUAL_INIT
//
// OrtStatus* ORT_API_CALL RegisterCustomOps(OrtSessionOptions* options, const OrtApiBase* api_base) {
// Ort::InitApi(api_base->GetApi(ORT_API_VERSION));
// // ...
// }
//
inline void InitApi(const OrtApi* api) { Global<void>::api_ = api; }
#else
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
// "Global initializer calls a non-constexpr function." Therefore you can't use ORT APIs in the other global initializers.
// Please define ORT_API_MANUAL_INIT if it conerns you.
#pragma warning(disable : 26426)
#endif
const OrtApi* Global<T>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION);
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
#endif
/// This returns a reference to the OrtApi interface in use
inline const OrtApi& GetApi() { return *Global<void>::api_; }
/// <summary>
/// This is a C++ wrapper for OrtApi::GetAvailableProviders() and
/// returns a vector of strings representing the available execution providers.
/// </summary>
/// <returns>vector of strings</returns>
std::vector<std::string> GetAvailableProviders();
/** \brief IEEE 754 half-precision floating point data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint16_t.
* The size of the structure should align with uint16_t and one can freely cast
* uint16_t buffers to/from Ort::Float16_t to feed and retrieve data.
*
* Generally, you can feed any of your types as float16/blfoat16 data to create a tensor
* on top of it, providing it can form a continuous buffer with 16-bit elements with no padding.
* And you can also feed a array of uint16_t elements directly. For example,
*
* \code{.unparsed}
* uint16_t values[] = { 15360, 16384, 16896, 17408, 17664};
* constexpr size_t values_length = sizeof(values) / sizeof(values[0]);
* std::vector<int64_t> dims = {values_length}; // one dimensional example
* Ort::MemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeDefault);
* // Note we are passing bytes count in this api, not number of elements -> sizeof(values)
* auto float16_tensor = Ort::Value::CreateTensor(info, values, sizeof(values),
* dims.data(), dims.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16);
* \endcode
*
* Here is another example, a little bit more elaborate. Let's assume that you use your own float16 type and you want to use
* a templated version of the API above so the type is automatically set based on your type. You will need to supply an extra
* template specialization.
*
* \code{.unparsed}
* namespace yours { struct half {}; } // assume this is your type, define this:
* namespace Ort {
* template<>
* struct TypeToTensorType<yours::half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
* } //namespace Ort
*
* std::vector<yours::half> values;
* std::vector<int64_t> dims = {values.size()}; // one dimensional example
* Ort::MemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeDefault);
* // Here we are passing element count -> values.size()
* auto float16_tensor = Ort::Value::CreateTensor<yours::half>(info, values.data(), values.size(), dims.data(), dims.size());
*
* \endcode
*/
struct Float16_t {
uint16_t value;
constexpr Float16_t() noexcept : value(0) {}
constexpr Float16_t(uint16_t v) noexcept : value(v) {}
constexpr operator uint16_t() const noexcept { return value; }
constexpr bool operator==(const Float16_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const Float16_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(Float16_t) == sizeof(uint16_t), "Sizes must match");
/** \brief bfloat16 (Brain Floating Point) data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint16_t.
* The size of the structure should align with uint16_t and one can freely cast
* uint16_t buffers to/from Ort::BFloat16_t to feed and retrieve data.
*
* See also code examples for Float16_t above.
*/
struct BFloat16_t {
uint16_t value;
constexpr BFloat16_t() noexcept : value(0) {}
constexpr BFloat16_t(uint16_t v) noexcept : value(v) {}
constexpr operator uint16_t() const noexcept { return value; }
constexpr bool operator==(const BFloat16_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const BFloat16_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(BFloat16_t) == sizeof(uint16_t), "Sizes must match");
namespace detail {
// This is used internally by the C++ API. This macro is to make it easy to generate overloaded methods for all of the various OrtRelease* functions for every Ort* type
// This can't be done in the C API since C doesn't have function overloading.
#define ORT_DEFINE_RELEASE(NAME) \
inline void OrtRelease(Ort##NAME* ptr) { GetApi().Release##NAME(ptr); }
ORT_DEFINE_RELEASE(Allocator);
ORT_DEFINE_RELEASE(MemoryInfo);
ORT_DEFINE_RELEASE(CustomOpDomain);
ORT_DEFINE_RELEASE(ThreadingOptions);
ORT_DEFINE_RELEASE(Env);
ORT_DEFINE_RELEASE(RunOptions);
ORT_DEFINE_RELEASE(Session);
ORT_DEFINE_RELEASE(SessionOptions);
ORT_DEFINE_RELEASE(TensorTypeAndShapeInfo);
ORT_DEFINE_RELEASE(SequenceTypeInfo);
ORT_DEFINE_RELEASE(MapTypeInfo);
ORT_DEFINE_RELEASE(TypeInfo);
ORT_DEFINE_RELEASE(Value);
ORT_DEFINE_RELEASE(ModelMetadata);
ORT_DEFINE_RELEASE(IoBinding);
ORT_DEFINE_RELEASE(ArenaCfg);
ORT_DEFINE_RELEASE(Status);
ORT_DEFINE_RELEASE(OpAttr);
ORT_DEFINE_RELEASE(Op);
ORT_DEFINE_RELEASE(KernelInfo);
#undef ORT_DEFINE_RELEASE
/** \brief This is a tagging template type. Use it with Base<T> to indicate that the C++ interface object
* has no ownership of the underlying C object.
*/
template <typename T>
struct Unowned {
using Type = T;
};
/** \brief Used internally by the C++ API. C++ wrapper types inherit from this.
* This is a zero cost abstraction to wrap the C API objects and delete them on destruction.
*
* All of the C++ classes
* a) serve as containers for pointers to objects that are created by the underlying C API.
* Their size is just a pointer size, no need to dynamically allocate them. Use them by value.
* b) Each of struct XXXX, XXX instances function as smart pointers to the underlying C API objects.
* they would release objects owned automatically when going out of scope, they are move-only.
* c) ConstXXXX and UnownedXXX structs function as non-owning, copyable containers for the above pointers.
* ConstXXXX allow calling const interfaces only. They give access to objects that are owned by somebody else
* such as Onnxruntime or instances of XXXX classes.
* d) serve convenient interfaces that return C++ objects and further enhance exception and type safety so they can be used
* in C++ code.
*
*/
/// <summary>
/// This is a non-const pointer holder that is move-only. Disposes of the pointer on destruction.
/// </summary>
template <typename T>
struct Base {
using contained_type = T;
constexpr Base() = default;
constexpr explicit Base(contained_type* p) noexcept : p_{p} {}
~Base() { OrtRelease(p_); }
Base(const Base&) = delete;
Base& operator=(const Base&) = delete;
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; }
Base& operator=(Base&& v) noexcept {
OrtRelease(p_);
p_ = v.release();
return *this;
}
constexpr operator contained_type*() const noexcept { return p_; }
/// \brief Relinquishes ownership of the contained C object pointer
/// The underlying object is not destroyed
contained_type* release() {
T* p = p_;
p_ = nullptr;
return p;
}
protected:
contained_type* p_{};
};
// Undefined. For const types use Base<Unowned<const T>>
template <typename T>
struct Base<const T>;
/// <summary>
/// Covers unowned pointers owned by either the ORT
/// or some other instance of CPP wrappers.
/// Used for ConstXXX and UnownedXXXX types that are copyable.
/// Also convenient to wrap raw OrtXX pointers .
/// </summary>
/// <typeparam name="T"></typeparam>
template <typename T>
struct Base<Unowned<T>> {
using contained_type = typename Unowned<T>::Type;
constexpr Base() = default;
constexpr explicit Base(contained_type* p) noexcept : p_{p} {}
~Base() = default;
Base(const Base&) = default;
Base& operator=(const Base&) = default;
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; }
Base& operator=(Base&& v) noexcept {
p_ = nullptr;
std::swap(p_, v.p_);
return *this;
}
constexpr operator contained_type*() const noexcept { return p_; }
protected:
contained_type* p_{};
};
// Light functor to release memory with OrtAllocator
struct AllocatedFree {
OrtAllocator* allocator_;
explicit AllocatedFree(OrtAllocator* allocator)
: allocator_(allocator) {}
void operator()(void* ptr) const {
if (ptr) allocator_->Free(allocator_, ptr);
}
};
} // namespace detail
struct AllocatorWithDefaultOptions;
struct Env;
struct TypeInfo;
struct Value;
struct ModelMetadata;
/** \brief unique_ptr typedef used to own strings allocated by OrtAllocators
* and release them at the end of the scope. The lifespan of the given allocator
* must eclipse the lifespan of AllocatedStringPtr instance
*/
using AllocatedStringPtr = std::unique_ptr<char, detail::AllocatedFree>;
/** \brief The Status that holds ownership of OrtStatus received from C API
* Use it to safely destroy OrtStatus* returned from the C API. Use appropriate
* constructors to construct an instance of a Status object from exceptions.
*/
struct Status : detail::Base<OrtStatus> {
explicit Status(std::nullptr_t) {} ///< Create an empty object, must be assigned a valid one to be used
explicit Status(OrtStatus* status); ///< Takes ownership of OrtStatus instance returned from the C API. Must be non-null
explicit Status(const Exception&); ///< Creates status instance out of exception
explicit Status(const std::exception&); ///< Creates status instance out of exception
std::string GetErrorMessage() const;
OrtErrorCode GetErrorCode() const;
};
/** \brief The ThreadingOptions
*
* The ThreadingOptions used for set global threadpools' options of The Env.
*/
struct ThreadingOptions : detail::Base<OrtThreadingOptions> {
/// \brief Wraps OrtApi::CreateThreadingOptions
ThreadingOptions();
/// \brief Wraps OrtApi::SetGlobalIntraOpNumThreads
ThreadingOptions& SetGlobalIntraOpNumThreads(int intra_op_num_threads);
/// \brief Wraps OrtApi::SetGlobalInterOpNumThreads
ThreadingOptions& SetGlobalInterOpNumThreads(int inter_op_num_threads);
/// \brief Wraps OrtApi::SetGlobalSpinControl
ThreadingOptions& SetGlobalSpinControl(int allow_spinning);
/// \brief Wraps OrtApi::SetGlobalDenormalAsZero
ThreadingOptions& SetGlobalDenormalAsZero();
/// \brief Wraps OrtApi::SetGlobalCustomCreateThreadFn
ThreadingOptions& SetGlobalCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn);
/// \brief Wraps OrtApi::SetGlobalCustomThreadCreationOptions
ThreadingOptions& SetGlobalCustomThreadCreationOptions(void* ort_custom_thread_creation_options);
/// \brief Wraps OrtApi::SetGlobalCustomJoinThreadFn
ThreadingOptions& SetGlobalCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn);
};
/** \brief The Env (Environment)
*
* The Env holds the logging state used by all other objects.
* <b>Note:</b> One Env must be created before using any other Onnxruntime functionality
*/
struct Env : detail::Base<OrtEnv> {
explicit Env(std::nullptr_t) {} ///< Create an empty Env object, must be assigned a valid one to be used
/// \brief Wraps OrtApi::CreateEnv
Env(OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief Wraps OrtApi::CreateEnvWithCustomLogger
Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param);
/// \brief Wraps OrtApi::CreateEnvWithGlobalThreadPools
Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief Wraps OrtApi::CreateEnvWithCustomLoggerAndGlobalThreadPools
Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param,
OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief C Interop Helper
explicit Env(OrtEnv* p) : Base<OrtEnv>{p} {}
Env& EnableTelemetryEvents(); ///< Wraps OrtApi::EnableTelemetryEvents
Env& DisableTelemetryEvents(); ///< Wraps OrtApi::DisableTelemetryEvents
Env& UpdateEnvWithCustomLogLevel(OrtLoggingLevel log_severity_level); ///< Wraps OrtApi::UpdateEnvWithCustomLogLevel
Env& CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocator
};
/** \brief Custom Op Domain
*
*/
struct CustomOpDomain : detail::Base<OrtCustomOpDomain> {
explicit CustomOpDomain(std::nullptr_t) {} ///< Create an empty CustomOpDomain object, must be assigned a valid one to be used
/// \brief Wraps OrtApi::CreateCustomOpDomain
explicit CustomOpDomain(const char* domain);
// This does not take ownership of the op, simply registers it.
void Add(const OrtCustomOp* op); ///< Wraps CustomOpDomain_Add
};
/** \brief RunOptions
*
*/
struct RunOptions : detail::Base<OrtRunOptions> {
explicit RunOptions(std::nullptr_t) {} ///< Create an empty RunOptions object, must be assigned a valid one to be used
RunOptions(); ///< Wraps OrtApi::CreateRunOptions
RunOptions& SetRunLogVerbosityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogVerbosityLevel
int GetRunLogVerbosityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogVerbosityLevel
RunOptions& SetRunLogSeverityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogSeverityLevel
int GetRunLogSeverityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogSeverityLevel
RunOptions& SetRunTag(const char* run_tag); ///< wraps OrtApi::RunOptionsSetRunTag
const char* GetRunTag() const; ///< Wraps OrtApi::RunOptionsGetRunTag
RunOptions& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddRunConfigEntry
/** \brief Terminates all currently executing Session::Run calls that were made using this RunOptions instance
*
* If a currently executing session needs to be force terminated, this can be called from another thread to force it to fail with an error
* Wraps OrtApi::RunOptionsSetTerminate
*/
RunOptions& SetTerminate();
/** \brief Clears the terminate flag so this RunOptions instance can be used in a new Session::Run call without it instantly terminating
*
* Wraps OrtApi::RunOptionsUnsetTerminate
*/
RunOptions& UnsetTerminate();
};
namespace detail {
// Utility function that returns a SessionOption config entry key for a specific custom operator.
// Ex: custom_op.[custom_op_name].[config]
std::string MakeCustomOpConfigEntryKey(const char* custom_op_name, const char* config);
} // namespace detail
/// <summary>
/// Class that represents session configuration entries for one or more custom operators.
///
/// Example:
/// Ort::CustomOpConfigs op_configs;
/// op_configs.AddConfig("my_custom_op", "device_type", "CPU");
///
/// Passed to Ort::SessionOptions::RegisterCustomOpsLibrary.
/// </summary>
struct CustomOpConfigs {
CustomOpConfigs() = default;
~CustomOpConfigs() = default;
CustomOpConfigs(const CustomOpConfigs&) = default;
CustomOpConfigs& operator=(const CustomOpConfigs&) = default;
CustomOpConfigs(CustomOpConfigs&& o) = default;
CustomOpConfigs& operator=(CustomOpConfigs&& o) = default;
/** \brief Adds a session configuration entry/value for a specific custom operator.
*
* \param custom_op_name The name of the custom operator for which to add a configuration entry.
* Must match the name returned by the CustomOp's GetName() method.
* \param config_key The name of the configuration entry.
* \param config_value The value of the configuration entry.
* \return A reference to this object to enable call chaining.
*/
CustomOpConfigs& AddConfig(const char* custom_op_name, const char* config_key, const char* config_value);
/** \brief Returns a flattened map of custom operator configuration entries and their values.
*
* The keys has been flattened to include both the custom operator name and the configuration entry key name.
* For example, a prior call to AddConfig("my_op", "key", "value") corresponds to the flattened key/value pair
* {"my_op.key", "value"}.
*
* \return An unordered map of flattened configurations.
*/
const std::unordered_map<std::string, std::string>& GetFlattenedConfigs() const;
private:
std::unordered_map<std::string, std::string> flat_configs_;
};
/** \brief Options object used when creating a new Session object
*
* Wraps ::OrtSessionOptions object and methods
*/
struct SessionOptions;
namespace detail {
// we separate const-only methods because passing const ptr to non-const methods
// is only discovered when inline methods are compiled which is counter-intuitive
template <typename T>
struct ConstSessionOptionsImpl : Base<T> {
using B = Base<T>;
using B::B;
SessionOptions Clone() const; ///< Creates and returns a copy of this SessionOptions object. Wraps OrtApi::CloneSessionOptions
std::string GetConfigEntry(const char* config_key) const; ///< Wraps OrtApi::GetSessionConfigEntry
bool HasConfigEntry(const char* config_key) const; ///< Wraps OrtApi::HasSessionConfigEntry
std::string GetConfigEntryOrDefault(const char* config_key, const std::string& def);
};
template <typename T>
struct SessionOptionsImpl : ConstSessionOptionsImpl<T> {
using B = ConstSessionOptionsImpl<T>;
using B::B;
SessionOptionsImpl& SetIntraOpNumThreads(int intra_op_num_threads); ///< Wraps OrtApi::SetIntraOpNumThreads
SessionOptionsImpl& SetInterOpNumThreads(int inter_op_num_threads); ///< Wraps OrtApi::SetInterOpNumThreads
SessionOptionsImpl& SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level); ///< Wraps OrtApi::SetSessionGraphOptimizationLevel
SessionOptionsImpl& EnableCpuMemArena(); ///< Wraps OrtApi::EnableCpuMemArena
SessionOptionsImpl& DisableCpuMemArena(); ///< Wraps OrtApi::DisableCpuMemArena
SessionOptionsImpl& SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_file); ///< Wraps OrtApi::SetOptimizedModelFilePath
SessionOptionsImpl& EnableProfiling(const ORTCHAR_T* profile_file_prefix); ///< Wraps OrtApi::EnableProfiling
SessionOptionsImpl& DisableProfiling(); ///< Wraps OrtApi::DisableProfiling
SessionOptionsImpl& EnableOrtCustomOps(); ///< Wraps OrtApi::EnableOrtCustomOps
SessionOptionsImpl& EnableMemPattern(); ///< Wraps OrtApi::EnableMemPattern
SessionOptionsImpl& DisableMemPattern(); ///< Wraps OrtApi::DisableMemPattern
SessionOptionsImpl& SetExecutionMode(ExecutionMode execution_mode); ///< Wraps OrtApi::SetSessionExecutionMode
SessionOptionsImpl& SetLogId(const char* logid); ///< Wraps OrtApi::SetSessionLogId
SessionOptionsImpl& SetLogSeverityLevel(int level); ///< Wraps OrtApi::SetSessionLogSeverityLevel
SessionOptionsImpl& Add(OrtCustomOpDomain* custom_op_domain); ///< Wraps OrtApi::AddCustomOpDomain
SessionOptionsImpl& DisablePerSessionThreads(); ///< Wraps OrtApi::DisablePerSessionThreads
SessionOptionsImpl& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddSessionConfigEntry
SessionOptionsImpl& AddInitializer(const char* name, const OrtValue* ort_val); ///< Wraps OrtApi::AddInitializer
SessionOptionsImpl& AddExternalInitializers(const std::vector<std::string>& names, const std::vector<Value>& ort_values); ///< Wraps OrtApi::AddExternalInitializers
SessionOptionsImpl& AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA
SessionOptionsImpl& AppendExecutionProvider_CUDA_V2(const OrtCUDAProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA_V2
SessionOptionsImpl& AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_ROCM
SessionOptionsImpl& AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_OpenVINO
SessionOptionsImpl& AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
SessionOptionsImpl& AppendExecutionProvider_TensorRT_V2(const OrtTensorRTProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
SessionOptionsImpl& AppendExecutionProvider_MIGraphX(const OrtMIGraphXProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_MIGraphX
///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CANN
SessionOptionsImpl& AppendExecutionProvider_CANN(const OrtCANNProviderOptions& provider_options);
/// Wraps OrtApi::SessionOptionsAppendExecutionProvider. Currently supports SNPE and XNNPACK.
SessionOptionsImpl& AppendExecutionProvider(const std::string& provider_name,
const std::unordered_map<std::string, std::string>& provider_options = {});
SessionOptionsImpl& SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomCreateThreadFn
SessionOptionsImpl& SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options); ///< Wraps OrtApi::SessionOptionsSetCustomThreadCreationOptions
SessionOptionsImpl& SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomJoinThreadFn
///< Registers the custom operator from the specified shared library via OrtApi::RegisterCustomOpsLibrary_V2.
///< The custom operator configurations are optional. If provided, custom operator configs are set via
///< OrtApi::AddSessionConfigEntry.
SessionOptionsImpl& RegisterCustomOpsLibrary(const ORTCHAR_T* library_name, const CustomOpConfigs& custom_op_configs = {});
SessionOptionsImpl& RegisterCustomOpsUsingFunction(const char* function_name); ///< Wraps OrtApi::RegisterCustomOpsUsingFunction
};
} // namespace detail
using UnownedSessionOptions = detail::SessionOptionsImpl<detail::Unowned<OrtSessionOptions>>;
using ConstSessionOptions = detail::ConstSessionOptionsImpl<detail::Unowned<const OrtSessionOptions>>;
/** \brief Wrapper around ::OrtSessionOptions
*
*/
struct SessionOptions : detail::SessionOptionsImpl<OrtSessionOptions> {
explicit SessionOptions(std::nullptr_t) {} ///< Create an empty SessionOptions object, must be assigned a valid one to be used
SessionOptions(); ///< Wraps OrtApi::CreateSessionOptions
explicit SessionOptions(OrtSessionOptions* p) : SessionOptionsImpl<OrtSessionOptions>{p} {} ///< Used for interop with the C API
UnownedSessionOptions GetUnowned() const { return UnownedSessionOptions{this->p_}; }
ConstSessionOptions GetConst() const { return ConstSessionOptions{this->p_}; }
};
/** \brief Wrapper around ::OrtModelMetadata
*
*/
struct ModelMetadata : detail::Base<OrtModelMetadata> {
explicit ModelMetadata(std::nullptr_t) {} ///< Create an empty ModelMetadata object, must be assigned a valid one to be used
explicit ModelMetadata(OrtModelMetadata* p) : Base<OrtModelMetadata>{p} {} ///< Used for interop with the C API
/** \brief Returns a copy of the producer name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetProducerNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetProducerName
/** \brief Returns a copy of the graph name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetGraphNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphName
/** \brief Returns a copy of the domain name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetDomainAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDomain
/** \brief Returns a copy of the description.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDescription
/** \brief Returns a copy of the graph description.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetGraphDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphDescription
/** \brief Returns a vector of copies of the custom metadata keys.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance std::vector of smart pointers that would deallocate the buffers when out of scope.
* The OrtAllocator instance must be valid at the point of memory release.
*/
std::vector<AllocatedStringPtr> GetCustomMetadataMapKeysAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetCustomMetadataMapKeys
/** \brief Looks up a value by a key in the Custom Metadata map
*
* \param key zero terminated string key to lookup
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* maybe nullptr if key is not found.
*
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr LookupCustomMetadataMapAllocated(const char* key, OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataLookupCustomMetadataMap
int64_t GetVersion() const; ///< Wraps OrtApi::ModelMetadataGetVersion
};
struct IoBinding;
namespace detail {
// we separate const-only methods because passing const ptr to non-const methods
// is only discovered when inline methods are compiled which is counter-intuitive
template <typename T>
struct ConstSessionImpl : Base<T> {
using B = Base<T>;
using B::B;
size_t GetInputCount() const; ///< Returns the number of model inputs
size_t GetOutputCount() const; ///< Returns the number of model outputs
size_t GetOverridableInitializerCount() const; ///< Returns the number of inputs that have defaults that can be overridden
/** \brief Returns a copy of input name at the specified index.
*
* \param index must less than the value returned by GetInputCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetInputNameAllocated(size_t index, OrtAllocator* allocator) const;
/** \brief Returns a copy of output name at then specified index.
*
* \param index must less than the value returned by GetOutputCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetOutputNameAllocated(size_t index, OrtAllocator* allocator) const;
/** \brief Returns a copy of the overridable initializer name at then specified index.
*
* \param index must less than the value returned by GetOverridableInitializerCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetOverridableInitializerNameAllocated(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetOverridableInitializerName
uint64_t GetProfilingStartTimeNs() const; ///< Wraps OrtApi::SessionGetProfilingStartTimeNs
ModelMetadata GetModelMetadata() const; ///< Wraps OrtApi::SessionGetModelMetadata
TypeInfo GetInputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetInputTypeInfo
TypeInfo GetOutputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOutputTypeInfo
TypeInfo GetOverridableInitializerTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOverridableInitializerTypeInfo
};
template <typename T>
struct SessionImpl : ConstSessionImpl<T> {
using B = ConstSessionImpl<T>;
using B::B;
/** \brief Run the model returning results in an Ort allocated vector.
*
* Wraps OrtApi::Run
*
* The caller provides a list of inputs and a list of the desired outputs to return.
*
* See the output logs for more information on warnings/errors that occur while processing the model.
* Common errors are.. (TODO)
*
* \param[in] run_options
* \param[in] input_names Array of null terminated strings of length input_count that is the list of input names
* \param[in] input_values Array of Value objects of length input_count that is the list of input values
* \param[in] input_count Number of inputs (the size of the input_names & input_values arrays)
* \param[in] output_names Array of C style strings of length output_count that is the list of output names
* \param[in] output_count Number of outputs (the size of the output_names array)
* \return A std::vector of Value objects that directly maps to the output_names array (eg. output_name[0] is the first entry of the returned vector)
*/
std::vector<Value> Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, size_t output_count);
/** \brief Run the model returning results in user provided outputs
* Same as Run(const RunOptions&, const char* const*, const Value*, size_t,const char* const*, size_t)
*/
void Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, Value* output_values, size_t output_count);
void Run(const RunOptions& run_options, const IoBinding&); ///< Wraps OrtApi::RunWithBinding
/** \brief End profiling and return a copy of the profiling file name.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr EndProfilingAllocated(OrtAllocator* allocator); ///< Wraps OrtApi::SessionEndProfiling
};
} // namespace detail
using ConstSession = detail::ConstSessionImpl<detail::Unowned<const OrtSession>>;
using UnownedSession = detail::SessionImpl<detail::Unowned<OrtSession>>;
/** \brief Wrapper around ::OrtSession
*
*/
struct Session : detail::SessionImpl<OrtSession> {
explicit Session(std::nullptr_t) {} ///< Create an empty Session object, must be assigned a valid one to be used
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options); ///< Wraps OrtApi::CreateSession
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options,
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionWithPrepackedWeightsContainer
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options); ///< Wraps OrtApi::CreateSessionFromArray
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options,
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionFromArrayWithPrepackedWeightsContainer
ConstSession GetConst() const { return ConstSession{this->p_}; }
UnownedSession GetUnowned() const { return UnownedSession{this->p_}; }
};
namespace detail {
template <typename T>
struct MemoryInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
std::string GetAllocatorName() const;
OrtAllocatorType GetAllocatorType() const;
int GetDeviceId() const;
OrtMemoryInfoDeviceType GetDeviceType() const;
OrtMemType GetMemoryType() const;
template <typename U>
bool operator==(const MemoryInfoImpl<U>& o) const;
};
} // namespace detail
// Const object holder that does not own the underlying object
using ConstMemoryInfo = detail::MemoryInfoImpl<detail::Unowned<const OrtMemoryInfo>>;
/** \brief Wrapper around ::OrtMemoryInfo
*
*/
struct MemoryInfo : detail::MemoryInfoImpl<OrtMemoryInfo> {
static MemoryInfo CreateCpu(OrtAllocatorType type, OrtMemType mem_type1);
explicit MemoryInfo(std::nullptr_t) {} ///< No instance is created
explicit MemoryInfo(OrtMemoryInfo* p) : MemoryInfoImpl<OrtMemoryInfo>{p} {} ///< Take ownership of a pointer created by C Api
MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type);
ConstMemoryInfo GetConst() const { return ConstMemoryInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct TensorTypeAndShapeInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
ONNXTensorElementDataType GetElementType() const; ///< Wraps OrtApi::GetTensorElementType
size_t GetElementCount() const; ///< Wraps OrtApi::GetTensorShapeElementCount
size_t GetDimensionsCount() const; ///< Wraps OrtApi::GetDimensionsCount
/** \deprecated use GetShape() returning std::vector
* [[deprecated]]
* This interface is unsafe to use
*/
[[deprecated("use GetShape()")]] void GetDimensions(int64_t* values, size_t values_count) const; ///< Wraps OrtApi::GetDimensions
void GetSymbolicDimensions(const char** values, size_t values_count) const; ///< Wraps OrtApi::GetSymbolicDimensions
std::vector<int64_t> GetShape() const; ///< Uses GetDimensionsCount & GetDimensions to return a std::vector of the shape
};
} // namespace detail
using ConstTensorTypeAndShapeInfo = detail::TensorTypeAndShapeInfoImpl<detail::Unowned<const OrtTensorTypeAndShapeInfo>>;
/** \brief Wrapper around ::OrtTensorTypeAndShapeInfo
*
*/
struct TensorTypeAndShapeInfo : detail::TensorTypeAndShapeInfoImpl<OrtTensorTypeAndShapeInfo> {
explicit TensorTypeAndShapeInfo(std::nullptr_t) {} ///< Create an empty TensorTypeAndShapeInfo object, must be assigned a valid one to be used
explicit TensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* p) : TensorTypeAndShapeInfoImpl{p} {} ///< Used for interop with the C API
ConstTensorTypeAndShapeInfo GetConst() const { return ConstTensorTypeAndShapeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct SequenceTypeInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
TypeInfo GetSequenceElementType() const; ///< Wraps OrtApi::GetSequenceElementType
};
} // namespace detail
using ConstSequenceTypeInfo = detail::SequenceTypeInfoImpl<detail::Unowned<const OrtSequenceTypeInfo>>;
/** \brief Wrapper around ::OrtSequenceTypeInfo
*
*/
struct SequenceTypeInfo : detail::SequenceTypeInfoImpl<OrtSequenceTypeInfo> {
explicit SequenceTypeInfo(std::nullptr_t) {} ///< Create an empty SequenceTypeInfo object, must be assigned a valid one to be used
explicit SequenceTypeInfo(OrtSequenceTypeInfo* p) : SequenceTypeInfoImpl<OrtSequenceTypeInfo>{p} {} ///< Used for interop with the C API
ConstSequenceTypeInfo GetConst() const { return ConstSequenceTypeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct MapTypeInfoImpl : detail::Base<T> {
using B = Base<T>;
using B::B;
ONNXTensorElementDataType GetMapKeyType() const; ///< Wraps OrtApi::GetMapKeyType
TypeInfo GetMapValueType() const; ///< Wraps OrtApi::GetMapValueType
};
} // namespace detail
using ConstMapTypeInfo = detail::MapTypeInfoImpl<detail::Unowned<const OrtMapTypeInfo>>;
/** \brief Wrapper around ::OrtMapTypeInfo
*
*/
struct MapTypeInfo : detail::MapTypeInfoImpl<OrtMapTypeInfo> {
explicit MapTypeInfo(std::nullptr_t) {} ///< Create an empty MapTypeInfo object, must be assigned a valid one to be used
explicit MapTypeInfo(OrtMapTypeInfo* p) : MapTypeInfoImpl<OrtMapTypeInfo>{p} {} ///< Used for interop with the C API
ConstMapTypeInfo GetConst() const { return ConstMapTypeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct TypeInfoImpl : detail::Base<T> {
using B = Base<T>;
using B::B;
ConstTensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const; ///< Wraps OrtApi::CastTypeInfoToTensorInfo
ConstSequenceTypeInfo GetSequenceTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToSequenceTypeInfo
ConstMapTypeInfo GetMapTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToMapTypeInfo
ONNXType GetONNXType() const;
};
} // namespace detail
/// <summary>
/// Contains a constant, unowned OrtTypeInfo that can be copied and passed around by value.
/// Provides access to const OrtTypeInfo APIs.
/// </summary>
using ConstTypeInfo = detail::TypeInfoImpl<detail::Unowned<const OrtTypeInfo>>;
/// <summary>
/// Type information that may contain either TensorTypeAndShapeInfo or
/// the information about contained sequence or map depending on the ONNXType.
/// </summary>
struct TypeInfo : detail::TypeInfoImpl<OrtTypeInfo> {
explicit TypeInfo(std::nullptr_t) {} ///< Create an empty TypeInfo object, must be assigned a valid one to be used
explicit TypeInfo(OrtTypeInfo* p) : TypeInfoImpl<OrtTypeInfo>{p} {} ///< C API Interop
ConstTypeInfo GetConst() const { return ConstTypeInfo{this->p_}; }
};
namespace detail {
// This structure is used to feed sparse tensor values
// information for use with FillSparseTensor<Format>() API
// if the data type for the sparse tensor values is numeric
// use data.p_data, otherwise, use data.str pointer to feed
// values. data.str is an array of const char* that are zero terminated.
// number of strings in the array must match shape size.
// For fully sparse tensors use shape {0} and set p_data/str
// to nullptr.
struct OrtSparseValuesParam {
const int64_t* values_shape;
size_t values_shape_len;
union {
const void* p_data;
const char** str;
} data;
};
// Provides a way to pass shape in a single
// argument
struct Shape {
const int64_t* shape;
size_t shape_len;
};
template <typename T>
struct ConstValueImpl : Base<T> {
using B = Base<T>;
using B::B;
/// <summary>
/// Obtains a pointer to a user defined data for experimental purposes
/// </summary>
template <typename R>
void GetOpaqueData(const char* domain, const char* type_name, R&) const; ///< Wraps OrtApi::GetOpaqueValue
bool IsTensor() const; ///< Returns true if Value is a tensor, false for other types like map/sequence/etc
bool HasValue() const; /// < Return true if OrtValue contains data and returns false if the OrtValue is a None
size_t GetCount() const; // If a non tensor, returns 2 for map and N for sequence, where N is the number of elements
Value GetValue(int index, OrtAllocator* allocator) const;
/// <summary>
/// This API returns a full length of string data contained within either a tensor or a sparse Tensor.
/// For sparse tensor it returns a full length of stored non-empty strings (values). The API is useful
/// for allocating necessary memory and calling GetStringTensorContent().
/// </summary>
/// <returns>total length of UTF-8 encoded bytes contained. No zero terminators counted.</returns>
size_t GetStringTensorDataLength() const;
/// <summary>
/// The API copies all of the UTF-8 encoded string data contained within a tensor or a sparse tensor
/// into a supplied buffer. Use GetStringTensorDataLength() to find out the length of the buffer to allocate.
/// The user must also allocate offsets buffer with the number of entries equal to that of the contained
/// strings.
///
/// Strings are always assumed to be on CPU, no X-device copy.
/// </summary>
/// <param name="buffer">user allocated buffer</param>
/// <param name="buffer_length">length in bytes of the allocated buffer</param>
/// <param name="offsets">a pointer to the offsets user allocated buffer</param>
/// <param name="offsets_count">count of offsets, must be equal to the number of strings contained.
/// that can be obtained from the shape of the tensor or from GetSparseTensorValuesTypeAndShapeInfo()
/// for sparse tensors</param>
void GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const;
/// <summary>
/// Returns a const typed pointer to the tensor contained data.
/// No type checking is performed, the caller must ensure the type matches the tensor type.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns>const pointer to data, no copies made</returns>
template <typename R>
const R* GetTensorData() const; ///< Wraps OrtApi::GetTensorMutableData /// <summary>
/// <summary>
/// Returns a non-typed pointer to a tensor contained data.
/// </summary>
/// <returns>const pointer to data, no copies made</returns>
const void* GetTensorRawData() const;
/// <summary>
/// The API returns type information for data contained in a tensor. For sparse
/// tensors it returns type information for contained non-zero values.
/// It returns dense shape for sparse tensors.
/// </summary>
/// <returns>TypeInfo</returns>
TypeInfo GetTypeInfo() const;
/// <summary>
/// The API returns type information for data contained in a tensor. For sparse
/// tensors it returns type information for contained non-zero values.
/// It returns dense shape for sparse tensors.
/// </summary>
/// <returns>TensorTypeAndShapeInfo</returns>
TensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const;
/// <summary>
/// This API returns information about the memory allocation used to hold data.
/// </summary>
/// <returns>Non owning instance of MemoryInfo</returns>
ConstMemoryInfo GetTensorMemoryInfo() const;
/// <summary>
/// The API copies UTF-8 encoded bytes for the requested string element
/// contained within a tensor or a sparse tensor into a provided buffer.
/// Use GetStringTensorElementLength() to obtain the length of the buffer to allocate.
/// </summary>
/// <param name="buffer_length"></param>
/// <param name="element_index"></param>
/// <param name="buffer"></param>
void GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const;
/// <summary>
/// The API returns a byte length of UTF-8 encoded string element
/// contained in either a tensor or a spare tensor values.
/// </summary>
/// <param name="element_index"></param>
/// <returns>byte length for the specified string element</returns>
size_t GetStringTensorElementLength(size_t element_index) const;
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// The API returns the sparse data format this OrtValue holds in a sparse tensor.
/// If the sparse tensor was not fully constructed, i.e. Use*() or Fill*() API were not used
/// the value returned is ORT_SPARSE_UNDEFINED.
/// </summary>
/// <returns>Format enum</returns>
OrtSparseFormat GetSparseFormat() const;
/// <summary>
/// The API returns type and shape information for stored non-zero values of the
/// sparse tensor. Use GetSparseTensorValues() to obtain values buffer pointer.
/// </summary>
/// <returns>TensorTypeAndShapeInfo values information</returns>
TensorTypeAndShapeInfo GetSparseTensorValuesTypeAndShapeInfo() const;
/// <summary>
/// The API returns type and shape information for the specified indices. Each supported
/// indices have their own enum values even if a give format has more than one kind of indices.
/// Use GetSparseTensorIndicesData() to obtain pointer to indices buffer.
/// </summary>
/// <param name="format">enum requested</param>
/// <returns>type and shape information</returns>
TensorTypeAndShapeInfo GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat format) const;
/// <summary>
/// The API retrieves a pointer to the internal indices buffer. The API merely performs
/// a convenience data type casting on the return type pointer. Make sure you are requesting
/// the right type, use GetSparseTensorIndicesTypeShapeInfo();
/// </summary>
/// <typeparam name="T">type to cast to</typeparam>
/// <param name="indices_format">requested indices kind</param>
/// <param name="num_indices">number of indices entries</param>
/// <returns>Pinter to the internal sparse tensor buffer containing indices. Do not free this pointer.</returns>
template <typename R>
const R* GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const;
/// <summary>
/// Returns true if the OrtValue contains a sparse tensor
/// </summary>
/// <returns></returns>
bool IsSparseTensor() const;
/// <summary>
/// The API returns a pointer to an internal buffer of the sparse tensor
/// containing non-zero values. The API merely does casting. Make sure you
/// are requesting the right data type by calling GetSparseTensorValuesTypeAndShapeInfo()
/// first.
/// </summary>
/// <typeparam name="T">numeric data types only. Use GetStringTensor*() to retrieve strings.</typeparam>
/// <returns>a pointer to the internal values buffer. Do not free this pointer.</returns>
template <typename R>
const R* GetSparseTensorValues() const;
#endif
};
template <typename T>
struct ValueImpl : ConstValueImpl<T> {
using B = ConstValueImpl<T>;
using B::B;
/// <summary>
/// Returns a non-const typed pointer to an OrtValue/Tensor contained buffer
/// No type checking is performed, the caller must ensure the type matches the tensor type.
/// </summary>
/// <returns>non-const pointer to data, no copies made</returns>
template <typename R>
R* GetTensorMutableData();
/// <summary>
/// Returns a non-typed non-const pointer to a tensor contained data.
/// </summary>
/// <returns>pointer to data, no copies made</returns>
void* GetTensorMutableRawData();
/// <summary>
// Obtain a reference to an element of data at the location specified
/// by the vector of dims.
/// </summary>
/// <typeparam name="R"></typeparam>
/// <param name="location">[in] expressed by a vecotr of dimensions offsets</param>
/// <returns></returns>
template <typename R>
R& At(const std::vector<int64_t>& location);
/// <summary>
/// Set all strings at once in a string tensor
/// </summary>
/// <param name="s">[in] An array of strings. Each string in this array must be null terminated.</param>
/// <param name="s_len">[in] Count of strings in s (Must match the size of \p value's tensor shape)</param>
void FillStringTensor(const char* const* s, size_t s_len);
/// <summary>
/// Set a single string in a string tensor
/// </summary>
/// <param name="s">[in] A null terminated UTF-8 encoded string</param>
/// <param name="index">[in] Index of the string in the tensor to set</param>
void FillStringTensorElement(const char* s, size_t index);
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// Supplies COO format specific indices and marks the contained sparse tensor as being a COO format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="indices_data">pointer to the user allocated buffer with indices. Use nullptr for fully sparse tensors.</param>
/// <param name="indices_num">number of indices entries. Use 0 for fully sparse tensors</param>
void UseCooIndices(int64_t* indices_data, size_t indices_num);
/// <summary>
/// Supplies CSR format specific indices and marks the contained sparse tensor as being a CSR format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="inner_data">pointer to the user allocated buffer with inner indices or nullptr for fully sparse tensors</param>
/// <param name="inner_num">number of csr inner indices or 0 for fully sparse tensors</param>
/// <param name="outer_data">pointer to the user allocated buffer with outer indices or nullptr for fully sparse tensors</param>
/// <param name="outer_num">number of csr outer indices or 0 for fully sparse tensors</param>
void UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num);
/// <summary>
/// Supplies BlockSparse format specific indices and marks the contained sparse tensor as being a BlockSparse format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="indices_shape">indices shape or a {0} for fully sparse</param>
/// <param name="indices_data">user allocated buffer with indices or nullptr for fully spare tensors</param>
void UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and COO indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values_param">values buffer information.</param>
/// <param name="indices_data">coo indices buffer or nullptr for fully sparse data</param>
/// <param name="indices_num">number of COO indices or 0 for fully sparse data</param>
void FillSparseTensorCoo(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values_param,
const int64_t* indices_data, size_t indices_num);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and CSR indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values">values buffer information</param>
/// <param name="inner_indices_data">csr inner indices pointer or nullptr for fully sparse tensors</param>
/// <param name="inner_indices_num">number of csr inner indices or 0 for fully sparse tensors</param>
/// <param name="outer_indices_data">pointer to csr indices data or nullptr for fully sparse tensors</param>
/// <param name="outer_indices_num">number of csr outer indices or 0</param>
void FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const int64_t* inner_indices_data, size_t inner_indices_num,
const int64_t* outer_indices_data, size_t outer_indices_num);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and BlockSparse indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values">values buffer information</param>
/// <param name="indices_shape">indices shape. use {0} for fully sparse tensors</param>
/// <param name="indices_data">pointer to indices data or nullptr for fully sparse tensors</param>
void FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const Shape& indices_shape,
const int32_t* indices_data);
#endif
};
} // namespace detail
using ConstValue = detail::ConstValueImpl<detail::Unowned<const OrtValue>>;
using UnownedValue = detail::ValueImpl<detail::Unowned<OrtValue>>;
/** \brief Wrapper around ::OrtValue
*
*/
struct Value : detail::ValueImpl<OrtValue> {
using Base = detail::ValueImpl<OrtValue>;
using OrtSparseValuesParam = detail::OrtSparseValuesParam;
using Shape = detail::Shape;
explicit Value(std::nullptr_t) {} ///< Create an empty Value object, must be assigned a valid one to be used
explicit Value(OrtValue* p) : Base{p} {} ///< Used for interop with the C API
Value(Value&&) = default;
Value& operator=(Value&&) = default;
ConstValue GetConst() const { return ConstValue{this->p_}; }
UnownedValue GetUnowned() const { return UnownedValue{this->p_}; }
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue.
* \tparam T The numeric datatype. This API is not suitable for strings.
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc).
* \param p_data Pointer to the data buffer.
* \param p_data_element_count The number of elements in the data buffer.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
*/
template <typename T>
static Value CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len);
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue.
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc).
* \param p_data Pointer to the data buffer.
* \param p_data_byte_count The number of bytes in the data buffer.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
* \param type The data type.
*/
static Value CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len,
ONNXTensorElementDataType type);
/** \brief Creates a tensor using a supplied OrtAllocator. Wraps OrtApi::CreateTensorAsOrtValue.
* \tparam T The numeric datatype. This API is not suitable for strings.
* \param allocator The allocator to use.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
*/
template <typename T>
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len);
/** \brief Creates a tensor using a supplied OrtAllocator. Wraps OrtApi::CreateTensorAsOrtValue.
* \param allocator The allocator to use.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
* \param type The data type.
*/
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type);
static Value CreateMap(Value& keys, Value& values); ///< Wraps OrtApi::CreateValue
static Value CreateSequence(std::vector<Value>& values); ///< Wraps OrtApi::CreateValue
template <typename T>
static Value CreateOpaque(const char* domain, const char* type_name, const T&); ///< Wraps OrtApi::CreateOpaqueValue
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// This is a simple forwarding method to the other overload that helps deducing
/// data type enum value from the type of the buffer.
/// </summary>
/// <typeparam name="T">numeric datatype. This API is not suitable for strings.</typeparam>
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
/// <returns></returns>
template <typename T>
static Value CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape,
const Shape& values_shape);
/// <summary>
/// Creates an OrtValue instance containing SparseTensor. This constructs
/// a sparse tensor that makes use of user allocated buffers. It does not make copies
/// of the user provided data and does not modify it. The lifespan of user provided buffers should
/// eclipse the life span of the resulting OrtValue. This call constructs an instance that only contain
/// a pointer to non-zero values. To fully populate the sparse tensor call Use<Format>Indices() API below
/// to supply a sparse format specific indices.
/// This API is not suitable for string data. Use CreateSparseTensor() with allocator specified so strings
/// can be properly copied into the allocated buffer.
/// </summary>
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
/// <param name="type">data type</param>
/// <returns>Ort::Value instance containing SparseTensor</returns>
static Value CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape,
const Shape& values_shape, ONNXTensorElementDataType type);
/// <summary>
/// This is a simple forwarding method to the below CreateSparseTensor.
/// This helps to specify data type enum in terms of C++ data type.
/// Use CreateSparseTensor<T>
/// </summary>
/// <typeparam name="T">numeric data type only. String data enum must be specified explicitly.</typeparam>
/// <param name="allocator">allocator to use</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <returns>Ort::Value</returns>
template <typename T>
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape);
/// <summary>
/// Creates an instance of OrtValue containing sparse tensor. The created instance has no data.
/// The data must be supplied by on of the FillSparseTensor<Format>() methods that take both non-zero values
/// and indices. The data will be copied into a buffer that would be allocated using the supplied allocator.
/// Use this API to create OrtValues that contain sparse tensors with all supported data types including
/// strings.
/// </summary>
/// <param name="allocator">allocator to use. The allocator lifespan must eclipse that of the resulting OrtValue</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="type">data type</param>
/// <returns>an instance of Ort::Value</returns>
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape, ONNXTensorElementDataType type);
#endif // !defined(DISABLE_SPARSE_TENSORS)
};
/// <summary>
/// Represents native memory allocation coming from one of the
/// OrtAllocators registered with OnnxRuntime.
/// Use it to wrap an allocation made by an allocator
/// so it can be automatically released when no longer needed.
/// </summary>
struct MemoryAllocation {
MemoryAllocation(OrtAllocator* allocator, void* p, size_t size);
~MemoryAllocation();
MemoryAllocation(const MemoryAllocation&) = delete;
MemoryAllocation& operator=(const MemoryAllocation&) = delete;
MemoryAllocation(MemoryAllocation&&) noexcept;
MemoryAllocation& operator=(MemoryAllocation&&) noexcept;
void* get() { return p_; }
size_t size() const { return size_; }
private:
OrtAllocator* allocator_;
void* p_;
size_t size_;
};
namespace detail {
template <typename T>
struct AllocatorImpl : Base<T> {
using B = Base<T>;
using B::B;
void* Alloc(size_t size);
MemoryAllocation GetAllocation(size_t size);
void Free(void* p);
ConstMemoryInfo GetInfo() const;
};
} // namespace detail
/** \brief Wrapper around ::OrtAllocator default instance that is owned by Onnxruntime
*
*/
struct AllocatorWithDefaultOptions : detail::AllocatorImpl<detail::Unowned<OrtAllocator>> {
explicit AllocatorWithDefaultOptions(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance
AllocatorWithDefaultOptions();
};
/** \brief Wrapper around ::OrtAllocator
*
*/
struct Allocator : detail::AllocatorImpl<OrtAllocator> {
explicit Allocator(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance
Allocator(const Session& session, const OrtMemoryInfo*);
};
using UnownedAllocator = detail::AllocatorImpl<detail::Unowned<OrtAllocator>>;
namespace detail {
namespace binding_utils {
// Bring these out of template
std::vector<std::string> GetOutputNamesHelper(const OrtIoBinding* binding, OrtAllocator*);
std::vector<Value> GetOutputValuesHelper(const OrtIoBinding* binding, OrtAllocator*);
} // namespace binding_utils
template <typename T>
struct ConstIoBindingImpl : Base<T> {
using B = Base<T>;
using B::B;
std::vector<std::string> GetOutputNames() const;
std::vector<std::string> GetOutputNames(OrtAllocator*) const;
std::vector<Value> GetOutputValues() const;
std::vector<Value> GetOutputValues(OrtAllocator*) const;
};
template <typename T>
struct IoBindingImpl : ConstIoBindingImpl<T> {
using B = ConstIoBindingImpl<T>;
using B::B;
void BindInput(const char* name, const Value&);
void BindOutput(const char* name, const Value&);
void BindOutput(const char* name, const OrtMemoryInfo*);
void ClearBoundInputs();
void ClearBoundOutputs();
void SynchronizeInputs();
void SynchronizeOutputs();
};
} // namespace detail
using ConstIoBinding = detail::ConstIoBindingImpl<detail::Unowned<const OrtIoBinding>>;
using UnownedIoBinding = detail::IoBindingImpl<detail::Unowned<OrtIoBinding>>;
/** \brief Wrapper around ::OrtIoBinding
*
*/
struct IoBinding : detail::IoBindingImpl<OrtIoBinding> {
explicit IoBinding(std::nullptr_t) {} ///< Create an empty object for convenience. Sometimes, we want to initialize members later.
explicit IoBinding(Session& session);
ConstIoBinding GetConst() const { return ConstIoBinding{this->p_}; }
UnownedIoBinding GetUnowned() const { return UnownedIoBinding{this->p_}; }
};
/*! \struct Ort::ArenaCfg
* \brief it is a structure that represents the configuration of an arena based allocator
* \details Please see docs/C_API.md for details
*/
struct ArenaCfg : detail::Base<OrtArenaCfg> {
explicit ArenaCfg(std::nullptr_t) {} ///< Create an empty ArenaCfg object, must be assigned a valid one to be used
/**
* Wraps OrtApi::CreateArenaCfg
* \param max_mem - use 0 to allow ORT to choose the default
* \param arena_extend_strategy - use -1 to allow ORT to choose the default, 0 = kNextPowerOfTwo, 1 = kSameAsRequested
* \param initial_chunk_size_bytes - use -1 to allow ORT to choose the default
* \param max_dead_bytes_per_chunk - use -1 to allow ORT to choose the default
* See docs/C_API.md for details on what the following parameters mean and how to choose these values
*/
ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk);
};
//
// Custom OPs (only needed to implement custom OPs)
//
/// <summary>
/// This struct provides life time management for custom op attribute
/// </summary>
struct OpAttr : detail::Base<OrtOpAttr> {
OpAttr(const char* name, const void* data, int len, OrtOpAttrType type);
};
/// <summary>
/// This class wraps a raw pointer OrtKernelContext* that is being passed
/// to the custom kernel Compute() method. Use it to safely access context
/// attributes, input and output parameters with exception safety guarantees.
/// See usage example in onnxruntime/test/testdata/custom_op_library/custom_op_library.cc
/// </summary>
struct KernelContext {
explicit KernelContext(OrtKernelContext* context);
size_t GetInputCount() const;
size_t GetOutputCount() const;
ConstValue GetInput(size_t index) const;
UnownedValue GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const;
UnownedValue GetOutput(size_t index, const std::vector<int64_t>& dims) const;
void* GetGPUComputeStream() const;
private:
OrtKernelContext* ctx_;
};
struct KernelInfo;
namespace detail {
namespace attr_utils {
void GetAttr(const OrtKernelInfo* p, const char* name, float&);
void GetAttr(const OrtKernelInfo* p, const char* name, int64_t&);
void GetAttr(const OrtKernelInfo* p, const char* name, std::string&);
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<float>&);
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<int64_t>&);
} // namespace attr_utils
template <typename T>
struct KernelInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
KernelInfo Copy() const;
template <typename R> // R is only implemented for float, int64_t, and string
R GetAttribute(const char* name) const {
R val;
attr_utils::GetAttr(this->p_, name, val);
return val;
}
template <typename R> // R is only implemented for std::vector<float>, std::vector<int64_t>
std::vector<R> GetAttributes(const char* name) const {
std::vector<R> result;
attr_utils::GetAttrs(this->p_, name, result);
return result;
}
Value GetTensorAttribute(const char* name, OrtAllocator* allocator) const;
size_t GetInputCount() const;
size_t GetOutputCount() const;
std::string GetInputName(size_t index) const;
std::string GetOutputName(size_t index) const;
TypeInfo GetInputTypeInfo(size_t index) const;
TypeInfo GetOutputTypeInfo(size_t index) const;
};
} // namespace detail
using ConstKernelInfo = detail::KernelInfoImpl<detail::Unowned<const OrtKernelInfo>>;
/// <summary>
/// This struct owns the OrtKernInfo* pointer when a copy is made.
/// For convenient wrapping of OrtKernelInfo* passed to kernel constructor
/// and query attributes, warp the pointer with Ort::Unowned<KernelInfo> instance
/// so it does not destroy the pointer the kernel does not own.
/// </summary>
struct KernelInfo : detail::KernelInfoImpl<OrtKernelInfo> {
explicit KernelInfo(std::nullptr_t) {} ///< Create an empty instance to initialize later
explicit KernelInfo(OrtKernelInfo* info); ///< Take ownership of the instance
ConstKernelInfo GetConst() const { return ConstKernelInfo{this->p_}; }
};
/// <summary>
/// Create and own custom defined operation.
/// </summary>
struct Op : detail::Base<OrtOp> {
explicit Op(std::nullptr_t) {} ///< Create an empty Operator object, must be assigned a valid one to be used
explicit Op(OrtOp*); ///< Take ownership of the OrtOp
static Op Create(const OrtKernelInfo* info, const char* op_name, const char* domain,
int version, const char** type_constraint_names,
const ONNXTensorElementDataType* type_constraint_values,
size_t type_constraint_count,
const OpAttr* attr_values,
size_t attr_count,
size_t input_count, size_t output_count);
void Invoke(const OrtKernelContext* context,
const Value* input_values,
size_t input_count,
Value* output_values,
size_t output_count);
// For easier refactoring
void Invoke(const OrtKernelContext* context,
const OrtValue* const* input_values,
size_t input_count,
OrtValue* const* output_values,
size_t output_count);
};
/// <summary>
/// This entire structure is deprecated, but we not marking
/// it as a whole yet since we want to preserve for the next release.
/// </summary>
struct CustomOpApi {
CustomOpApi(const OrtApi& api) : api_(api) {}
/** \deprecated use Ort::Value::GetTensorTypeAndShape()
* [[deprecated]]
* This interface produces a pointer that must be released. Not exception safe.
*/
[[deprecated("use Ort::Value::GetTensorTypeAndShape()")]] OrtTensorTypeAndShapeInfo* GetTensorTypeAndShape(_In_ const OrtValue* value);
/** \deprecated use Ort::TensorTypeAndShapeInfo::GetElementCount()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::TensorTypeAndShapeInfo::GetElementCount()")]] size_t GetTensorShapeElementCount(_In_ const OrtTensorTypeAndShapeInfo* info);
/** \deprecated use Ort::TensorTypeAndShapeInfo::GetElementType()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::TensorTypeAndShapeInfo::GetElementType()")]] ONNXTensorElementDataType GetTensorElementType(const OrtTensorTypeAndShapeInfo* info);
/** \deprecated use Ort::TensorTypeAndShapeInfo::GetDimensionsCount()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::TensorTypeAndShapeInfo::GetDimensionsCount()")]] size_t GetDimensionsCount(_In_ const OrtTensorTypeAndShapeInfo* info);
/** \deprecated use Ort::TensorTypeAndShapeInfo::GetShape()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::TensorTypeAndShapeInfo::GetShape()")]] void GetDimensions(_In_ const OrtTensorTypeAndShapeInfo* info, _Out_ int64_t* dim_values, size_t dim_values_length);
/** \deprecated
* [[deprecated]]
* This interface sets dimensions to TensorTypeAndShapeInfo, but has no effect on the OrtValue.
*/
[[deprecated("Do not use")]] void SetDimensions(OrtTensorTypeAndShapeInfo* info, _In_ const int64_t* dim_values, size_t dim_count);
/** \deprecated use Ort::Value::GetTensorMutableData()
* [[deprecated]]
* This interface is redundant.
*/
template <typename T>
[[deprecated("use Ort::Value::GetTensorMutableData()")]] T* GetTensorMutableData(_Inout_ OrtValue* value);
/** \deprecated use Ort::Value::GetTensorData()
* [[deprecated]]
* This interface is redundant.
*/
template <typename T>
[[deprecated("use Ort::Value::GetTensorData()")]] const T* GetTensorData(_Inout_ const OrtValue* value);
/** \deprecated use Ort::Value::GetTensorMemoryInfo()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::Value::GetTensorMemoryInfo()")]] const OrtMemoryInfo* GetTensorMemoryInfo(_In_ const OrtValue* value);
/** \deprecated use Ort::TensorTypeAndShapeInfo::GetShape()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::TensorTypeAndShapeInfo::GetShape()")]] std::vector<int64_t> GetTensorShape(const OrtTensorTypeAndShapeInfo* info);
/** \deprecated use TensorTypeAndShapeInfo instances for automatic ownership.
* [[deprecated]]
* This interface is not exception safe.
*/
[[deprecated("use TensorTypeAndShapeInfo")]] void ReleaseTensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* input);
/** \deprecated use Ort::KernelContext::GetInputCount
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::KernelContext::GetInputCount")]] size_t KernelContext_GetInputCount(const OrtKernelContext* context);
/** \deprecated use Ort::KernelContext::GetInput
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::KernelContext::GetInput")]] const OrtValue* KernelContext_GetInput(const OrtKernelContext* context, _In_ size_t index);
/** \deprecated use Ort::KernelContext::GetOutputCount
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::KernelContext::GetOutputCount")]] size_t KernelContext_GetOutputCount(const OrtKernelContext* context);
/** \deprecated use Ort::KernelContext::GetOutput
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::KernelContext::GetOutput")]] OrtValue* KernelContext_GetOutput(OrtKernelContext* context, _In_ size_t index, _In_ const int64_t* dim_values, size_t dim_count);
/** \deprecated use Ort::KernelContext::GetGPUComputeStream
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::KernelContext::GetGPUComputeStream")]] void* KernelContext_GetGPUComputeStream(const OrtKernelContext* context);
/** \deprecated use Ort::ThrowOnError()
* [[deprecated]]
* This interface is redundant.
*/
[[deprecated("use Ort::ThrowOnError()")]] void ThrowOnError(OrtStatus* result);
/** \deprecated use Ort::OpAttr
* [[deprecated]]
* This interface is not exception safe.
*/
[[deprecated("use Ort::OpAttr")]] OrtOpAttr* CreateOpAttr(_In_ const char* name,
_In_ const void* data,
_In_ int len,
_In_ OrtOpAttrType type);
/** \deprecated use Ort::OpAttr
* [[deprecated]]
* This interface is not exception safe.
*/
[[deprecated("use Ort::OpAttr")]] void ReleaseOpAttr(_Frees_ptr_opt_ OrtOpAttr* op_attr);
/** \deprecated use Ort::Op
* [[deprecated]]
* This interface is not exception safe.
*/
[[deprecated("use Ort::Op")]] OrtOp* CreateOp(_In_ const OrtKernelInfo* info,
_In_ const char* op_name,
_In_ const char* domain,
_In_ int version,
_In_opt_ const char** type_constraint_names,
_In_opt_ const ONNXTensorElementDataType* type_constraint_values,
_In_opt_ int type_constraint_count,
_In_opt_ const OrtOpAttr* const* attr_values,
_In_opt_ int attr_count,
_In_ int input_count,
_In_ int output_count);
/** \deprecated use Ort::Op::Invoke
* [[deprecated]]
* This interface is redundant
*/
[[deprecated("use Ort::Op::Invoke")]] void InvokeOp(_In_ const OrtKernelContext* context,
_In_ const OrtOp* ort_op,
_In_ const OrtValue* const* input_values,
_In_ int input_count,
_Inout_ OrtValue* const* output_values,
_In_ int output_count);
/** \deprecated use Ort::Op for automatic lifespan management.
* [[deprecated]]
* This interface is not exception safe.
*/
[[deprecated("use Ort::Op")]] void ReleaseOp(_Frees_ptr_opt_ OrtOp* ort_op);
/** \deprecated use Ort::KernelInfo for automatic lifespan management or for
* querying attributes
* [[deprecated]]
* This interface is redundant
*/
template <typename T> // T is only implemented for std::vector<float>, std::vector<int64_t>, float, int64_t, and string
[[deprecated("use Ort::KernelInfo::GetAttribute")]] T KernelInfoGetAttribute(_In_ const OrtKernelInfo* info, _In_ const char* name);
/** \deprecated use Ort::KernelInfo::Copy
* querying attributes
* [[deprecated]]
* This interface is not exception safe
*/
[[deprecated("use Ort::KernelInfo::Copy")]] OrtKernelInfo* CopyKernelInfo(_In_ const OrtKernelInfo* info);
/** \deprecated use Ort::KernelInfo for lifespan management
* querying attributes
* [[deprecated]]
* This interface is not exception safe
*/
[[deprecated("use Ort::KernelInfo")]] void ReleaseKernelInfo(_Frees_ptr_opt_ OrtKernelInfo* info_copy);
private:
const OrtApi& api_;
};
template <typename TOp, typename TKernel>
struct CustomOpBase : OrtCustomOp {
CustomOpBase() {
OrtCustomOp::version = ORT_API_VERSION;
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info) { return static_cast<const TOp*>(this_)->CreateKernel(*api, info); };
OrtCustomOp::GetName = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetName(); };
OrtCustomOp::GetExecutionProviderType = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetExecutionProviderType(); };
OrtCustomOp::GetInputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetInputTypeCount(); };
OrtCustomOp::GetInputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputType(index); };
OrtCustomOp::GetInputMemoryType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputMemoryType(index); };
OrtCustomOp::GetOutputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetOutputTypeCount(); };
OrtCustomOp::GetOutputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputType(index); };
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) { static_cast<TKernel*>(op_kernel)->Compute(context); };
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 26409)
#endif
OrtCustomOp::KernelDestroy = [](void* op_kernel) { delete static_cast<TKernel*>(op_kernel); };
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
OrtCustomOp::GetInputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputCharacteristic(index); };
OrtCustomOp::GetOutputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputCharacteristic(index); };
OrtCustomOp::GetVariadicInputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicInputMinArity(); };
OrtCustomOp::GetVariadicInputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicInputHomogeneity()); };
OrtCustomOp::GetVariadicOutputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicOutputMinArity(); };
OrtCustomOp::GetVariadicOutputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicOutputHomogeneity()); };
}
// Default implementation of GetExecutionProviderType that returns nullptr to default to the CPU provider
const char* GetExecutionProviderType() const { return nullptr; }
// Default implementations of GetInputCharacteristic() and GetOutputCharacteristic() below
// (inputs and outputs are required by default)
OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(size_t /*index*/) const {
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
}
OrtCustomOpInputOutputCharacteristic GetOutputCharacteristic(size_t /*index*/) const {
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
}
// Default implemention of GetInputMemoryType() that returns OrtMemTypeDefault
OrtMemType GetInputMemoryType(size_t /*index*/) const {
return OrtMemTypeDefault;
}
// Default implementation of GetVariadicInputMinArity() returns 1 to specify that a variadic input
// should expect at least 1 argument.
int GetVariadicInputMinArity() const {
return 1;
}
// Default implementation of GetVariadicInputHomegeneity() returns true to specify that all arguments
// to a variadic input should be of the same type.
bool GetVariadicInputHomogeneity() const {
return true;
}
// Default implementation of GetVariadicOutputMinArity() returns 1 to specify that a variadic output
// should produce at least 1 output value.
int GetVariadicOutputMinArity() const {
return 1;
}
// Default implementation of GetVariadicOutputHomegeneity() returns true to specify that all output values
// produced by a variadic output should be of the same type.
bool GetVariadicOutputHomogeneity() const {
return true;
}
// Declare list of session config entries used by this Custom Op.
// Implement this function in order to get configs from CustomOpBase::GetSessionConfigs().
// This default implementation returns an empty vector of config entries.
std::vector<std::string> GetSessionConfigKeys() const {
return std::vector<std::string>{};
}
protected:
// Helper function that returns a map of session config entries specified by CustomOpBase::GetSessionConfigKeys.
void GetSessionConfigs(std::unordered_map<std::string, std::string>& out, ConstSessionOptions options) const;
};
} // namespace Ort
#include "onnxruntime_cxx_inline.h"
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// Do not include this file directly. Please include "onnxruntime_cxx_api.h" instead.
// If interested in trying out features of the new experimental C++ API, include "experimental_onnxruntime_cxx_api.h" instead.
//
// These are the inline implementations of the C++ header APIs. They're in this separate file as to not clutter
// the main C++ file with implementation details.
namespace Ort {
namespace detail {
inline void ThrowStatus(const Status& st) {
std::string error_message = st.GetErrorMessage();
OrtErrorCode error_code = st.GetErrorCode();
ORT_CXX_API_THROW(std::move(error_message), error_code);
}
} // namespace detail
inline void ThrowOnError(OrtStatus* ort_status) {
if (ort_status) {
Ort::Status st(ort_status);
detail::ThrowStatus(st);
}
}
inline void ThrowOnError(const Status& st) {
if (st) {
detail::ThrowStatus(st);
}
}
inline Status::Status(OrtStatus* status) : Base<OrtStatus>{status} {
}
inline Status::Status(const std::exception& e) {
p_ = GetApi().CreateStatus(ORT_FAIL, e.what());
}
inline Status::Status(const Exception& e) {
p_ = GetApi().CreateStatus(e.GetOrtErrorCode(), e.what());
}
inline std::string Status::GetErrorMessage() const {
std::string message(GetApi().GetErrorMessage(p_));
return message;
}
inline OrtErrorCode Status::GetErrorCode() const {
return GetApi().GetErrorCode(p_);
}
// This template converts a C++ type into it's ONNXTensorElementDataType
template <typename T>
struct TypeToTensorType;
template <>
struct TypeToTensorType<float> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
};
template <>
struct TypeToTensorType<Float16_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16;
};
template <>
struct TypeToTensorType<BFloat16_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16;
};
template <>
struct TypeToTensorType<double> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE;
};
template <>
struct TypeToTensorType<int8_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8;
};
template <>
struct TypeToTensorType<int16_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16;
};
template <>
struct TypeToTensorType<int32_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32;
};
template <>
struct TypeToTensorType<int64_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
};
template <>
struct TypeToTensorType<uint8_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8;
};
template <>
struct TypeToTensorType<uint16_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16;
};
template <>
struct TypeToTensorType<uint32_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32;
};
template <>
struct TypeToTensorType<uint64_t> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64;
};
template <>
struct TypeToTensorType<bool> {
static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL;
};
inline MemoryAllocation::MemoryAllocation(OrtAllocator* allocator, void* p, size_t size)
: allocator_(allocator), p_(p), size_(size) {
}
inline MemoryAllocation::~MemoryAllocation() {
if (p_ != nullptr) {
// We do not throw out of destructor
auto ret = GetApi().AllocatorFree(allocator_, p_);
static_cast<void>(ret);
}
}
inline MemoryAllocation::MemoryAllocation(MemoryAllocation&& o) noexcept : allocator_(nullptr), p_(nullptr), size_(0) {
*this = std::move(o);
}
inline MemoryAllocation& MemoryAllocation::operator=(MemoryAllocation&& o) noexcept {
OrtAllocator* alloc = nullptr;
void* p = nullptr;
size_t sz = 0;
// Swap out this
std::swap(alloc, allocator_);
std::swap(p, p_);
std::swap(sz, size_);
// Swap with incoming
std::swap(allocator_, o.allocator_);
std::swap(p_, o.p_);
std::swap(size_, o.size_);
// Destroy this instance if needed
MemoryAllocation this_alloc(alloc, p, sz);
return *this;
}
namespace detail {
template <typename T>
inline void* AllocatorImpl<T>::Alloc(size_t size) {
void* out;
ThrowOnError(GetApi().AllocatorAlloc(this->p_, size, &out));
return out;
}
template <typename T>
inline MemoryAllocation AllocatorImpl<T>::GetAllocation(size_t size) {
void* out;
ThrowOnError(GetApi().AllocatorAlloc(this->p_, size, &out));
MemoryAllocation result(this->p_, out, size);
return result;
}
template <typename T>
inline void AllocatorImpl<T>::Free(void* p) {
ThrowOnError(GetApi().AllocatorFree(this->p_, p));
}
template <typename T>
inline ConstMemoryInfo AllocatorImpl<T>::GetInfo() const {
const OrtMemoryInfo* out;
ThrowOnError(GetApi().AllocatorGetInfo(this->p_, &out));
return ConstMemoryInfo{out};
}
} // namespace detail
inline AllocatorWithDefaultOptions::AllocatorWithDefaultOptions() {
ThrowOnError(GetApi().GetAllocatorWithDefaultOptions(&this->p_));
}
inline Allocator::Allocator(const Session& sess, const OrtMemoryInfo* mem_info) {
ThrowOnError(GetApi().CreateAllocator(sess, mem_info, &this->p_));
}
namespace detail {
template <typename T>
inline std::string MemoryInfoImpl<T>::GetAllocatorName() const {
const char* name = nullptr;
ThrowOnError(GetApi().MemoryInfoGetName(this->p_, &name));
return std::string(name);
}
template <typename T>
inline OrtAllocatorType MemoryInfoImpl<T>::GetAllocatorType() const {
OrtAllocatorType type;
ThrowOnError(GetApi().MemoryInfoGetType(this->p_, &type));
return type;
}
template <typename T>
inline int MemoryInfoImpl<T>::GetDeviceId() const {
int id = 0;
ThrowOnError(GetApi().MemoryInfoGetId(this->p_, &id));
return id;
}
template <typename T>
inline OrtMemoryInfoDeviceType MemoryInfoImpl<T>::GetDeviceType() const {
OrtMemoryInfoDeviceType type;
GetApi().MemoryInfoGetDeviceType(this->p_, &type);
return type;
}
template <typename T>
inline OrtMemType MemoryInfoImpl<T>::GetMemoryType() const {
OrtMemType type;
ThrowOnError(GetApi().MemoryInfoGetMemType(this->p_, &type));
return type;
}
template <typename T>
template <typename U>
inline bool MemoryInfoImpl<T>::operator==(const MemoryInfoImpl<U>& o) const {
int comp_result = 0;
ThrowOnError(Ort::GetApi().CompareMemoryInfo(this->p_, o, &comp_result));
return comp_result == 0;
}
} // namespace detail
inline MemoryInfo MemoryInfo::CreateCpu(OrtAllocatorType type, OrtMemType mem_type) {
OrtMemoryInfo* p;
ThrowOnError(GetApi().CreateCpuMemoryInfo(type, mem_type, &p));
return MemoryInfo(p);
}
inline MemoryInfo::MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type) {
ThrowOnError(GetApi().CreateMemoryInfo(name, type, id, mem_type, &this->p_));
}
namespace detail {
template <typename T>
inline std::vector<std::string> ConstIoBindingImpl<T>::GetOutputNames() const {
AllocatorWithDefaultOptions allocator;
return binding_utils::GetOutputNamesHelper(this->p_, allocator);
}
template <typename T>
inline std::vector<std::string> ConstIoBindingImpl<T>::GetOutputNames(OrtAllocator* allocator) const {
return binding_utils::GetOutputNamesHelper(this->p_, allocator);
}
template <typename T>
inline std::vector<Value> ConstIoBindingImpl<T>::GetOutputValues() const {
AllocatorWithDefaultOptions allocator;
return binding_utils::GetOutputValuesHelper(this->p_, allocator);
}
template <typename T>
inline std::vector<Value> ConstIoBindingImpl<T>::GetOutputValues(OrtAllocator* allocator) const {
return binding_utils::GetOutputValuesHelper(this->p_, allocator);
}
template <typename T>
inline void IoBindingImpl<T>::BindInput(const char* name, const Value& value) {
ThrowOnError(GetApi().BindInput(this->p_, name, value));
}
template <typename T>
inline void IoBindingImpl<T>::BindOutput(const char* name, const Value& value) {
ThrowOnError(GetApi().BindOutput(this->p_, name, value));
}
template <typename T>
inline void IoBindingImpl<T>::BindOutput(const char* name, const OrtMemoryInfo* mem_info) {
ThrowOnError(GetApi().BindOutputToDevice(this->p_, name, mem_info));
}
template <typename T>
inline void IoBindingImpl<T>::ClearBoundInputs() {
GetApi().ClearBoundInputs(this->p_);
}
template <typename T>
inline void IoBindingImpl<T>::ClearBoundOutputs() {
GetApi().ClearBoundOutputs(this->p_);
}
template <typename T>
inline void IoBindingImpl<T>::SynchronizeInputs() {
ThrowOnError(GetApi().SynchronizeBoundInputs(this->p_));
}
template <typename T>
inline void IoBindingImpl<T>::SynchronizeOutputs() {
ThrowOnError(GetApi().SynchronizeBoundOutputs(this->p_));
}
namespace binding_utils {
inline std::vector<std::string> GetOutputNamesHelper(const OrtIoBinding* binding, OrtAllocator* allocator) {
std::vector<std::string> result;
auto free_fn = detail::AllocatedFree(allocator);
using Ptr = std::unique_ptr<void, decltype(free_fn)>;
char* buffer = nullptr;
size_t* lengths = nullptr;
size_t count = 0;
ThrowOnError(GetApi().GetBoundOutputNames(binding, allocator, &buffer, &lengths, &count));
if (count == 0) {
return result;
}
Ptr buffer_g(buffer, free_fn);
Ptr lengths_g(lengths, free_fn);
result.reserve(count);
for (size_t i = 0; i < count; ++i) {
auto sz = *lengths;
result.emplace_back(buffer, sz);
buffer += sz;
++lengths;
}
return result;
}
inline std::vector<Value> GetOutputValuesHelper(const OrtIoBinding* binding, OrtAllocator* allocator) {
std::vector<Value> result;
size_t owned = 0;
size_t output_count = 0;
// Lambda to release the buffer when no longer needed and
// make sure that we destroy all instances on exception
auto free_fn = [&owned, &output_count, allocator](OrtValue** buffer) {
if (buffer) {
while (owned < output_count) {
auto* p = buffer + owned++;
GetApi().ReleaseValue(*p);
}
allocator->Free(allocator, buffer);
}
};
using Ptr = std::unique_ptr<OrtValue*, decltype(free_fn)>;
OrtValue** output_buffer = nullptr;
ThrowOnError(GetApi().GetBoundOutputValues(binding, allocator, &output_buffer, &output_count));
if (output_count == 0) {
return result;
}
Ptr buffer_g(output_buffer, free_fn);
result.reserve(output_count);
for (size_t i = 0; i < output_count; ++i) {
result.emplace_back(output_buffer[i]);
++owned;
}
return result;
}
} // namespace binding_utils
} // namespace detail
inline IoBinding::IoBinding(Session& session) {
ThrowOnError(GetApi().CreateIoBinding(session, &this->p_));
}
inline ArenaCfg::ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk) {
ThrowOnError(GetApi().CreateArenaCfg(max_mem, arena_extend_strategy, initial_chunk_size_bytes, max_dead_bytes_per_chunk, &p_));
}
inline ThreadingOptions::ThreadingOptions() {
ThrowOnError(GetApi().CreateThreadingOptions(&p_));
}
inline ThreadingOptions& ThreadingOptions::SetGlobalIntraOpNumThreads(int intra_op_num_threads) {
ThrowOnError(GetApi().SetGlobalIntraOpNumThreads(p_, intra_op_num_threads));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalInterOpNumThreads(int inter_op_num_threads) {
ThrowOnError(GetApi().SetGlobalInterOpNumThreads(p_, inter_op_num_threads));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalSpinControl(int allow_spinning) {
ThrowOnError(GetApi().SetGlobalSpinControl(p_, allow_spinning));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalDenormalAsZero() {
ThrowOnError(GetApi().SetGlobalDenormalAsZero(p_));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn) {
ThrowOnError(GetApi().SetGlobalCustomCreateThreadFn(p_, ort_custom_create_thread_fn));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalCustomThreadCreationOptions(void* ort_custom_thread_creation_options) {
ThrowOnError(GetApi().SetGlobalCustomThreadCreationOptions(p_, ort_custom_thread_creation_options));
return *this;
}
inline ThreadingOptions& ThreadingOptions::SetGlobalCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn) {
ThrowOnError(GetApi().SetGlobalCustomJoinThreadFn(p_, ort_custom_join_thread_fn));
return *this;
}
inline Env::Env(OrtLoggingLevel logging_level, _In_ const char* logid) {
ThrowOnError(GetApi().CreateEnv(logging_level, logid, &p_));
if (strcmp(logid, "onnxruntime-node") == 0) {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS));
} else {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS));
}
}
inline Env::Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param) {
ThrowOnError(GetApi().CreateEnvWithCustomLogger(logging_function, logger_param, logging_level, logid, &p_));
if (strcmp(logid, "onnxruntime-node") == 0) {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS));
} else {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS));
}
}
inline Env::Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level, _In_ const char* logid) {
ThrowOnError(GetApi().CreateEnvWithGlobalThreadPools(logging_level, logid, tp_options, &p_));
if (strcmp(logid, "onnxruntime-node") == 0) {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS));
} else {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS));
}
}
inline Env::Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param,
OrtLoggingLevel logging_level, _In_ const char* logid) {
ThrowOnError(GetApi().CreateEnvWithCustomLoggerAndGlobalThreadPools(logging_function, logger_param, logging_level, logid, tp_options, &p_));
if (strcmp(logid, "onnxruntime-node") == 0) {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_NODEJS));
} else {
ThrowOnError(GetApi().SetLanguageProjection(p_, OrtLanguageProjection::ORT_PROJECTION_CPLUSPLUS));
}
}
inline Env& Env::EnableTelemetryEvents() {
ThrowOnError(GetApi().EnableTelemetryEvents(p_));
return *this;
}
inline Env& Env::DisableTelemetryEvents() {
ThrowOnError(GetApi().DisableTelemetryEvents(p_));
return *this;
}
inline Env& Env::UpdateEnvWithCustomLogLevel(OrtLoggingLevel log_severity_level) {
ThrowOnError(GetApi().UpdateEnvWithCustomLogLevel(p_, log_severity_level));
return *this;
}
inline Env& Env::CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg) {
ThrowOnError(GetApi().CreateAndRegisterAllocator(p_, mem_info, arena_cfg));
return *this;
}
inline CustomOpDomain::CustomOpDomain(const char* domain) {
ThrowOnError(GetApi().CreateCustomOpDomain(domain, &p_));
}
inline void CustomOpDomain::Add(const OrtCustomOp* op) {
ThrowOnError(GetApi().CustomOpDomain_Add(p_, op));
}
inline RunOptions::RunOptions() {
ThrowOnError(GetApi().CreateRunOptions(&p_));
}
inline RunOptions& RunOptions::SetRunLogVerbosityLevel(int level) {
ThrowOnError(GetApi().RunOptionsSetRunLogVerbosityLevel(p_, level));
return *this;
}
inline RunOptions& RunOptions::SetRunLogSeverityLevel(int level) {
ThrowOnError(GetApi().RunOptionsSetRunLogSeverityLevel(p_, level));
return *this;
}
inline int RunOptions::GetRunLogVerbosityLevel() const {
int out;
ThrowOnError(GetApi().RunOptionsGetRunLogVerbosityLevel(p_, &out));
return out;
}
inline int RunOptions::GetRunLogSeverityLevel() const {
int out;
ThrowOnError(GetApi().RunOptionsGetRunLogSeverityLevel(p_, &out));
return out;
}
inline RunOptions& RunOptions::SetRunTag(const char* run_tag) {
ThrowOnError(GetApi().RunOptionsSetRunTag(p_, run_tag));
return *this;
}
inline const char* RunOptions::GetRunTag() const {
const char* out;
ThrowOnError(GetApi().RunOptionsGetRunTag(p_, &out));
return out;
}
inline RunOptions& RunOptions::AddConfigEntry(const char* config_key, const char* config_value) {
ThrowOnError(GetApi().AddRunConfigEntry(p_, config_key, config_value));
return *this;
}
inline RunOptions& RunOptions::SetTerminate() {
ThrowOnError(GetApi().RunOptionsSetTerminate(p_));
return *this;
}
inline RunOptions& RunOptions::UnsetTerminate() {
ThrowOnError(GetApi().RunOptionsUnsetTerminate(p_));
return *this;
}
namespace detail {
template <typename T>
inline Ort::SessionOptions ConstSessionOptionsImpl<T>::Clone() const {
OrtSessionOptions* out;
ThrowOnError(GetApi().CloneSessionOptions(this->p_, &out));
return SessionOptions{out};
}
template <typename T>
inline std::string ConstSessionOptionsImpl<T>::GetConfigEntry(const char* config_key) const {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the string value
Ort::ThrowOnError(GetApi().GetSessionConfigEntry(this->p_, config_key, nullptr, &size));
std::string out;
out.resize(size);
Ort::ThrowOnError(GetApi().GetSessionConfigEntry(this->p_, config_key, &out[0], &size));
out.resize(size - 1); // remove the terminating character '\0'
return out;
}
template <typename T>
inline bool ConstSessionOptionsImpl<T>::HasConfigEntry(const char* config_key) const {
int out = 0;
Ort::ThrowOnError(GetApi().HasSessionConfigEntry(this->p_, config_key, &out));
return static_cast<bool>(out);
}
template <typename T>
inline std::string ConstSessionOptionsImpl<T>::GetConfigEntryOrDefault(const char* config_key, const std::string& def) {
if (!this->HasConfigEntry(config_key)) {
return def;
}
return this->GetConfigEntry(config_key);
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetIntraOpNumThreads(int intra_op_num_threads) {
ThrowOnError(GetApi().SetIntraOpNumThreads(this->p_, intra_op_num_threads));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetInterOpNumThreads(int inter_op_num_threads) {
ThrowOnError(GetApi().SetInterOpNumThreads(this->p_, inter_op_num_threads));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level) {
ThrowOnError(GetApi().SetSessionGraphOptimizationLevel(this->p_, graph_optimization_level));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_filepath) {
ThrowOnError(GetApi().SetOptimizedModelFilePath(this->p_, optimized_model_filepath));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::EnableProfiling(const ORTCHAR_T* profile_file_prefix) {
ThrowOnError(GetApi().EnableProfiling(this->p_, profile_file_prefix));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::DisableProfiling() {
ThrowOnError(GetApi().DisableProfiling(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::EnableOrtCustomOps() {
ThrowOnError(GetApi().EnableOrtCustomOps(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::EnableMemPattern() {
ThrowOnError(GetApi().EnableMemPattern(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::DisableMemPattern() {
ThrowOnError(GetApi().DisableMemPattern(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::EnableCpuMemArena() {
ThrowOnError(GetApi().EnableCpuMemArena(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::DisableCpuMemArena() {
ThrowOnError(GetApi().DisableCpuMemArena(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetExecutionMode(ExecutionMode execution_mode) {
ThrowOnError(GetApi().SetSessionExecutionMode(this->p_, execution_mode));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetLogId(const char* logid) {
ThrowOnError(GetApi().SetSessionLogId(this->p_, logid));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetLogSeverityLevel(int level) {
ThrowOnError(GetApi().SetSessionLogSeverityLevel(this->p_, level));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::Add(OrtCustomOpDomain* custom_op_domain) {
ThrowOnError(GetApi().AddCustomOpDomain(this->p_, custom_op_domain));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AddConfigEntry(const char* config_key, const char* config_value) {
ThrowOnError(GetApi().AddSessionConfigEntry(this->p_, config_key, config_value));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AddInitializer(const char* name, const OrtValue* ort_val) {
ThrowOnError(GetApi().AddInitializer(this->p_, name, ort_val));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::DisablePerSessionThreads() {
ThrowOnError(GetApi().DisablePerSessionThreads(this->p_));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AddExternalInitializers(const std::vector<std::string>& names,
const std::vector<Value>& ort_values) {
const size_t inputs_num = names.size();
if (inputs_num != ort_values.size()) {
ORT_CXX_API_THROW("Expecting names and ort_values to have the same length", ORT_INVALID_ARGUMENT);
}
std::vector<const char*> names_ptr;
std::vector<const OrtValue*> ort_values_ptrs;
names_ptr.reserve(inputs_num);
ort_values_ptrs.reserve(inputs_num);
for (size_t i = 0; i < inputs_num; ++i) {
names_ptr.push_back(names[i].c_str());
ort_values_ptrs.push_back(ort_values[i]);
}
ThrowOnError(GetApi().AddExternalInitializers(this->p_, names_ptr.data(), ort_values_ptrs.data(), inputs_num));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CUDA(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_CUDA_V2(const OrtCUDAProviderOptionsV2& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CUDA_V2(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_ROCM(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_TensorRT(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_TensorRT_V2(const OrtTensorRTProviderOptionsV2& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_TensorRT_V2(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_MIGraphX(const OrtMIGraphXProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_MIGraphX(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_CANN(const OrtCANNProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_CANN(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider(
const std::string& provider_name,
const std::unordered_map<std::string, std::string>& provider_options) {
auto num_entries = provider_options.size();
std::vector<const char*> keys, values;
if (num_entries > 0) {
keys.reserve(num_entries);
values.reserve(num_entries);
for (const auto& entry : provider_options) {
keys.push_back(entry.first.c_str());
values.push_back(entry.second.c_str());
}
}
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider(this->p_, provider_name.c_str(),
keys.data(), values.data(), num_entries));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn) {
ThrowOnError(GetApi().SessionOptionsSetCustomCreateThreadFn(this->p_, ort_custom_create_thread_fn));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options) {
ThrowOnError(GetApi().SessionOptionsSetCustomThreadCreationOptions(this->p_, ort_custom_thread_creation_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn) {
ThrowOnError(GetApi().SessionOptionsSetCustomJoinThreadFn(this->p_, ort_custom_join_thread_fn));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options) {
ThrowOnError(GetApi().SessionOptionsAppendExecutionProvider_OpenVINO(this->p_, &provider_options));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::RegisterCustomOpsLibrary(const ORTCHAR_T* library_name,
const CustomOpConfigs& custom_op_configs) {
// Add custom op config entries before registering the custom op library. Otherwise, the config entries _may_ be ignored by
// the custom op library.
for (const auto& config_iter : custom_op_configs.GetFlattenedConfigs()) {
AddConfigEntry(config_iter.first.c_str(), config_iter.second.c_str());
}
ThrowOnError(GetApi().RegisterCustomOpsLibrary_V2(this->p_, library_name));
return *this;
}
template <typename T>
inline SessionOptionsImpl<T>& SessionOptionsImpl<T>::RegisterCustomOpsUsingFunction(const char* registration_function_name) {
ThrowOnError(GetApi().RegisterCustomOpsUsingFunction(this->p_, registration_function_name));
return *this;
}
/// Session
template <typename T>
inline size_t ConstSessionImpl<T>::GetInputCount() const {
size_t out;
ThrowOnError(GetApi().SessionGetInputCount(this->p_, &out));
return out;
}
template <typename T>
inline size_t ConstSessionImpl<T>::GetOutputCount() const {
size_t out;
ThrowOnError(GetApi().SessionGetOutputCount(this->p_, &out));
return out;
}
template <typename T>
inline size_t ConstSessionImpl<T>::GetOverridableInitializerCount() const {
size_t out;
ThrowOnError(GetApi().SessionGetOverridableInitializerCount(this->p_, &out));
return out;
}
template <typename T>
inline AllocatedStringPtr ConstSessionImpl<T>::GetInputNameAllocated(size_t index, OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().SessionGetInputName(this->p_, index, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
template <typename T>
inline AllocatedStringPtr ConstSessionImpl<T>::GetOutputNameAllocated(size_t index, OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().SessionGetOutputName(this->p_, index, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
template <typename T>
inline AllocatedStringPtr ConstSessionImpl<T>::GetOverridableInitializerNameAllocated(size_t index, OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().SessionGetOverridableInitializerName(this->p_, index, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
template <typename T>
inline uint64_t ConstSessionImpl<T>::GetProfilingStartTimeNs() const {
uint64_t out;
ThrowOnError(GetApi().SessionGetProfilingStartTimeNs(this->p_, &out));
return out;
}
template <typename T>
inline ModelMetadata ConstSessionImpl<T>::GetModelMetadata() const {
OrtModelMetadata* out;
ThrowOnError(GetApi().SessionGetModelMetadata(this->p_, &out));
return ModelMetadata{out};
}
template <typename T>
inline TypeInfo ConstSessionImpl<T>::GetInputTypeInfo(size_t index) const {
OrtTypeInfo* out;
ThrowOnError(GetApi().SessionGetInputTypeInfo(this->p_, index, &out));
return TypeInfo{out};
}
template <typename T>
inline TypeInfo ConstSessionImpl<T>::GetOutputTypeInfo(size_t index) const {
OrtTypeInfo* out;
ThrowOnError(GetApi().SessionGetOutputTypeInfo(this->p_, index, &out));
return TypeInfo{out};
}
template <typename T>
inline TypeInfo ConstSessionImpl<T>::GetOverridableInitializerTypeInfo(size_t index) const {
OrtTypeInfo* out;
ThrowOnError(GetApi().SessionGetOverridableInitializerTypeInfo(this->p_, index, &out));
return TypeInfo{out};
}
template <typename T>
inline std::vector<Value> SessionImpl<T>::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, size_t output_count) {
std::vector<Value> output_values;
output_values.reserve(output_count);
for (size_t i = 0; i < output_count; i++)
output_values.emplace_back(nullptr);
Run(run_options, input_names, input_values, input_count, output_names, output_values.data(), output_count);
return output_values;
}
template <typename T>
inline void SessionImpl<T>::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, Value* output_values, size_t output_count) {
static_assert(sizeof(Value) == sizeof(OrtValue*), "Value is really just an array of OrtValue* in memory, so we can reinterpret_cast safely");
auto ort_input_values = reinterpret_cast<const OrtValue* const*>(input_values);
auto ort_output_values = reinterpret_cast<OrtValue**>(output_values);
ThrowOnError(GetApi().Run(this->p_, run_options, input_names, ort_input_values, input_count, output_names, output_count, ort_output_values));
}
template <typename T>
inline void SessionImpl<T>::Run(const RunOptions& run_options, const IoBinding& io_binding) {
ThrowOnError(GetApi().RunWithBinding(this->p_, run_options, io_binding));
}
template <typename T>
inline AllocatedStringPtr SessionImpl<T>::EndProfilingAllocated(OrtAllocator* allocator) {
char* out = nullptr;
ThrowOnError(GetApi().SessionEndProfiling(this->p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
} // namespace detail
inline SessionOptions::SessionOptions() {
ThrowOnError(GetApi().CreateSessionOptions(&this->p_));
}
/// CustomOpConfigs
inline std::string detail::MakeCustomOpConfigEntryKey(const char* custom_op_name, const char* config) {
std::string config_key = "custom_op.";
config_key += custom_op_name;
config_key += ".";
config_key += config;
return config_key;
}
inline CustomOpConfigs& CustomOpConfigs::AddConfig(const char* custom_op_name, const char* config_key, const char* config_value) {
const std::string full_flat_key = detail::MakeCustomOpConfigEntryKey(custom_op_name, config_key);
flat_configs_[full_flat_key] = config_value;
return *this;
}
inline const std::unordered_map<std::string, std::string>& CustomOpConfigs::GetFlattenedConfigs() const {
return flat_configs_;
}
inline Session::Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options) {
ThrowOnError(GetApi().CreateSession(env, model_path, options, &this->p_));
}
inline Session::Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options,
OrtPrepackedWeightsContainer* prepacked_weights_container) {
ThrowOnError(GetApi().CreateSessionWithPrepackedWeightsContainer(env, model_path, options, prepacked_weights_container, &this->p_));
}
inline Session::Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options) {
ThrowOnError(GetApi().CreateSessionFromArray(env, model_data, model_data_length, options, &this->p_));
}
inline Session::Session(const Env& env, const void* model_data, size_t model_data_length,
const SessionOptions& options, OrtPrepackedWeightsContainer* prepacked_weights_container) {
ThrowOnError(GetApi().CreateSessionFromArrayWithPrepackedWeightsContainer(env, model_data, model_data_length, options,
prepacked_weights_container, &this->p_));
}
inline AllocatedStringPtr ModelMetadata::GetProducerNameAllocated(OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataGetProducerName(p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline AllocatedStringPtr ModelMetadata::GetGraphNameAllocated(OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataGetGraphName(p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline AllocatedStringPtr ModelMetadata::GetDomainAllocated(OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataGetDomain(p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline AllocatedStringPtr Ort::ModelMetadata::GetDescriptionAllocated(OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataGetDescription(p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline AllocatedStringPtr ModelMetadata::GetGraphDescriptionAllocated(OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataGetGraphDescription(p_, allocator, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline AllocatedStringPtr ModelMetadata::LookupCustomMetadataMapAllocated(const char* key, OrtAllocator* allocator) const {
char* out;
ThrowOnError(GetApi().ModelMetadataLookupCustomMetadataMap(p_, allocator, key, &out));
return AllocatedStringPtr(out, detail::AllocatedFree(allocator));
}
inline std::vector<AllocatedStringPtr> ModelMetadata::GetCustomMetadataMapKeysAllocated(OrtAllocator* allocator) const {
auto deletor = detail::AllocatedFree(allocator);
std::vector<AllocatedStringPtr> result;
char** out = nullptr;
int64_t num_keys = 0;
ThrowOnError(GetApi().ModelMetadataGetCustomMetadataMapKeys(p_, allocator, &out, &num_keys));
if (num_keys <= 0) {
return result;
}
// array of pointers will be freed
std::unique_ptr<void, decltype(deletor)> array_guard(out, deletor);
// reserve may throw
auto strings_deletor = [&deletor, num_keys](char** out) { for(int64_t i = 0; i < num_keys; ++i) deletor(out[i]); };
std::unique_ptr<char*, decltype(strings_deletor)> strings_guard(out, strings_deletor);
result.reserve(static_cast<size_t>(num_keys));
strings_guard.release();
for (int64_t i = 0; i < num_keys; ++i) {
result.push_back(AllocatedStringPtr(out[i], deletor));
}
return result;
}
inline int64_t ModelMetadata::GetVersion() const {
int64_t out;
ThrowOnError(GetApi().ModelMetadataGetVersion(p_, &out));
return out;
}
namespace detail {
template <typename T>
inline ONNXTensorElementDataType TensorTypeAndShapeInfoImpl<T>::GetElementType() const {
ONNXTensorElementDataType out;
ThrowOnError(GetApi().GetTensorElementType(this->p_, &out));
return out;
}
template <typename T>
inline size_t TensorTypeAndShapeInfoImpl<T>::GetElementCount() const {
size_t out;
ThrowOnError(GetApi().GetTensorShapeElementCount(this->p_, &out));
return static_cast<size_t>(out);
}
template <typename T>
inline size_t TensorTypeAndShapeInfoImpl<T>::GetDimensionsCount() const {
size_t out;
ThrowOnError(GetApi().GetDimensionsCount(this->p_, &out));
return out;
}
template <typename T>
inline void TensorTypeAndShapeInfoImpl<T>::GetDimensions(int64_t* values, size_t values_count) const {
ThrowOnError(GetApi().GetDimensions(this->p_, values, values_count));
}
template <typename T>
inline void TensorTypeAndShapeInfoImpl<T>::GetSymbolicDimensions(const char** values, size_t values_count) const {
ThrowOnError(GetApi().GetSymbolicDimensions(this->p_, values, values_count));
}
template <typename T>
inline std::vector<int64_t> TensorTypeAndShapeInfoImpl<T>::GetShape() const {
std::vector<int64_t> out(GetDimensionsCount(), 0);
ThrowOnError(GetApi().GetDimensions(this->p_, out.data(), out.size()));
return out;
}
} // namespace detail
namespace detail {
template <typename T>
inline ConstTensorTypeAndShapeInfo TypeInfoImpl<T>::GetTensorTypeAndShapeInfo() const {
const OrtTensorTypeAndShapeInfo* out;
ThrowOnError(GetApi().CastTypeInfoToTensorInfo(this->p_, &out));
return ConstTensorTypeAndShapeInfo{out};
}
template <typename T>
inline ConstSequenceTypeInfo TypeInfoImpl<T>::GetSequenceTypeInfo() const {
const OrtSequenceTypeInfo* out;
ThrowOnError(GetApi().CastTypeInfoToSequenceTypeInfo(this->p_, &out));
return ConstSequenceTypeInfo{out};
}
template <typename T>
inline ConstMapTypeInfo TypeInfoImpl<T>::GetMapTypeInfo() const {
const OrtMapTypeInfo* out;
ThrowOnError(GetApi().CastTypeInfoToMapTypeInfo(this->p_, &out));
return ConstMapTypeInfo{out};
}
template <typename T>
inline ONNXType TypeInfoImpl<T>::GetONNXType() const {
ONNXType out;
ThrowOnError(GetApi().GetOnnxTypeFromTypeInfo(this->p_, &out));
return out;
}
} // namespace detail
namespace detail {
template <typename T>
inline TypeInfo SequenceTypeInfoImpl<T>::GetSequenceElementType() const {
OrtTypeInfo* output;
ThrowOnError(GetApi().GetSequenceElementType(this->p_, &output));
return TypeInfo{output};
}
} // namespace detail
namespace detail {
template <typename T>
inline ONNXTensorElementDataType MapTypeInfoImpl<T>::GetMapKeyType() const {
ONNXTensorElementDataType out;
ThrowOnError(GetApi().GetMapKeyType(this->p_, &out));
return out;
}
template <typename T>
inline TypeInfo MapTypeInfoImpl<T>::GetMapValueType() const {
OrtTypeInfo* output;
ThrowOnError(GetApi().GetMapValueType(this->p_, &output));
return TypeInfo{output};
}
} // namespace detail
namespace detail {
template <typename T>
template <typename R>
inline void ConstValueImpl<T>::GetOpaqueData(const char* domain, const char* type_name, R& out) const {
ThrowOnError(GetApi().GetOpaqueValue(domain, type_name, this->p_, &out, sizeof(R)));
}
template <typename T>
inline bool ConstValueImpl<T>::IsTensor() const {
int out;
ThrowOnError(GetApi().IsTensor(this->p_, &out));
return out != 0;
}
template <typename T>
inline bool ConstValueImpl<T>::HasValue() const {
int out;
ThrowOnError(GetApi().HasValue(this->p_, &out));
return out != 0;
}
template <typename T>
inline size_t ConstValueImpl<T>::GetCount() const {
size_t out;
ThrowOnError(GetApi().GetValueCount(this->p_, &out));
return out;
}
template <typename T>
inline Value ConstValueImpl<T>::GetValue(int index, OrtAllocator* allocator) const {
OrtValue* out;
ThrowOnError(GetApi().GetValue(this->p_, index, allocator, &out));
return Value{out};
}
template <typename T>
inline size_t ConstValueImpl<T>::GetStringTensorDataLength() const {
size_t out;
ThrowOnError(GetApi().GetStringTensorDataLength(this->p_, &out));
return out;
}
template <typename T>
inline size_t ConstValueImpl<T>::GetStringTensorElementLength(size_t element_index) const {
size_t out;
ThrowOnError(GetApi().GetStringTensorElementLength(this->p_, element_index, &out));
return out;
}
template <typename T>
template <typename R>
inline const R* ConstValueImpl<T>::GetTensorData() const {
R* out;
ThrowOnError(GetApi().GetTensorMutableData(const_cast<OrtValue*>(this->p_), (void**)&out));
return out;
}
template <typename T>
inline const void* ConstValueImpl<T>::GetTensorRawData() const {
void* out;
ThrowOnError(GetApi().GetTensorMutableData(const_cast<OrtValue*>(this->p_), &out));
return out;
}
template <typename T>
inline TypeInfo ConstValueImpl<T>::GetTypeInfo() const {
OrtTypeInfo* output;
ThrowOnError(GetApi().GetTypeInfo(this->p_, &output));
return TypeInfo{output};
}
template <typename T>
inline TensorTypeAndShapeInfo ConstValueImpl<T>::GetTensorTypeAndShapeInfo() const {
OrtTensorTypeAndShapeInfo* output;
ThrowOnError(GetApi().GetTensorTypeAndShape(this->p_, &output));
return TensorTypeAndShapeInfo{output};
}
template <typename T>
inline ConstMemoryInfo ConstValueImpl<T>::GetTensorMemoryInfo() const {
const OrtMemoryInfo* mem_info;
ThrowOnError(GetApi().GetTensorMemoryInfo(this->p_, &mem_info));
return ConstMemoryInfo(mem_info);
}
template <typename T>
inline void ConstValueImpl<T>::GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const {
ThrowOnError(GetApi().GetStringTensorElement(this->p_, buffer_length, element_index, buffer));
}
template <typename T>
inline void ConstValueImpl<T>::GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const {
ThrowOnError(GetApi().GetStringTensorContent(this->p_, buffer, buffer_length, offsets, offsets_count));
}
#if !defined(DISABLE_SPARSE_TENSORS)
template <typename T>
inline OrtSparseFormat ConstValueImpl<T>::GetSparseFormat() const {
OrtSparseFormat format;
ThrowOnError(GetApi().GetSparseTensorFormat(this->p_, &format));
return format;
}
template <typename T>
inline TensorTypeAndShapeInfo ConstValueImpl<T>::GetSparseTensorValuesTypeAndShapeInfo() const {
OrtTensorTypeAndShapeInfo* output;
ThrowOnError(GetApi().GetSparseTensorValuesTypeAndShape(this->p_, &output));
return TensorTypeAndShapeInfo{output};
}
template <typename T>
inline TensorTypeAndShapeInfo ConstValueImpl<T>::GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat indices_format) const {
OrtTensorTypeAndShapeInfo* output;
ThrowOnError(GetApi().GetSparseTensorIndicesTypeShape(this->p_, indices_format, &output));
return TensorTypeAndShapeInfo{output};
}
template <typename T>
template <typename R>
inline const R* ConstValueImpl<T>::GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const {
const void* out;
ThrowOnError(GetApi().GetSparseTensorIndices(this->p_, indices_format, &num_indices, &out));
return reinterpret_cast<const R*>(out);
}
template <typename T>
inline bool ConstValueImpl<T>::IsSparseTensor() const {
int out;
ThrowOnError(GetApi().IsSparseTensor(this->p_, &out));
return out != 0;
}
template <typename T>
template <typename R>
inline const R* ConstValueImpl<T>::GetSparseTensorValues() const {
const void* out;
ThrowOnError(GetApi().GetSparseTensorValues(this->p_, &out));
return reinterpret_cast<const R*>(out);
}
#endif
template <typename T>
void ValueImpl<T>::FillStringTensor(const char* const* s, size_t s_len) {
ThrowOnError(GetApi().FillStringTensor(this->p_, s, s_len));
}
template <typename T>
void ValueImpl<T>::FillStringTensorElement(const char* s, size_t index) {
ThrowOnError(GetApi().FillStringTensorElement(this->p_, s, index));
}
template <typename T>
void* ValueImpl<T>::GetTensorMutableRawData() {
void* out;
ThrowOnError(GetApi().GetTensorMutableData(this->p_, &out));
return out;
}
template <typename T>
template <typename R>
R* ValueImpl<T>::GetTensorMutableData() {
R* out;
ThrowOnError(GetApi().GetTensorMutableData(this->p_, (void**)&out));
return out;
}
template <typename T>
template <typename R>
R& ValueImpl<T>::At(const std::vector<int64_t>& location) {
static_assert(!std::is_same<T, std::string>::value, "this api does not support std::string");
R* out;
ThrowOnError(GetApi().TensorAt(this->p_, location.data(), location.size(), (void**)&out));
return *out;
}
#if !defined(DISABLE_SPARSE_TENSORS)
template <typename T>
void ValueImpl<T>::UseCooIndices(int64_t* indices_data, size_t indices_num) {
ThrowOnError(GetApi().UseCooIndices(this->p_, indices_data, indices_num));
}
template <typename T>
void ValueImpl<T>::UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num) {
ThrowOnError(GetApi().UseCsrIndices(this->p_, inner_data, inner_num, outer_data, outer_num));
}
template <typename T>
void ValueImpl<T>::UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data) {
ThrowOnError(GetApi().UseBlockSparseIndices(this->p_, indices_shape.shape, indices_shape.shape_len, indices_data));
}
template <typename T>
void ValueImpl<T>::FillSparseTensorCoo(const OrtMemoryInfo* mem_info, const OrtSparseValuesParam& values_param,
const int64_t* indices_data, size_t indices_num) {
ThrowOnError(GetApi().FillSparseTensorCoo(this->p_, mem_info, values_param.values_shape,
values_param.values_shape_len, values_param.data.p_data,
indices_data, indices_num));
}
template <typename T>
void ValueImpl<T>::FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const int64_t* inner_indices_data, size_t inner_indices_num,
const int64_t* outer_indices_data, size_t outer_indices_num) {
ThrowOnError(GetApi().FillSparseTensorCsr(this->p_, data_mem_info, values.values_shape, values.values_shape_len, values.data.p_data,
inner_indices_data, inner_indices_num,
outer_indices_data, outer_indices_num));
}
template <typename T>
void ValueImpl<T>::FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const Shape& indices_shape,
const int32_t* indices_data) {
ThrowOnError(GetApi().FillSparseTensorBlockSparse(this->p_, data_mem_info, values.values_shape, values.values_shape_len, values.data.p_data,
indices_shape.shape, indices_shape.shape_len,
indices_data));
}
#endif // !defined(DISABLE_SPARSE_TENSORS)
} // namespace detail
template <typename T>
inline Value Value::CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len) {
return CreateTensor(info, p_data, p_data_element_count * sizeof(T), shape, shape_len, TypeToTensorType<T>::type);
}
inline Value Value::CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len,
ONNXTensorElementDataType type) {
OrtValue* out;
ThrowOnError(GetApi().CreateTensorWithDataAsOrtValue(info, p_data, p_data_byte_count, shape, shape_len, type, &out));
return Value{out};
}
template <typename T>
inline Value Value::CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len) {
return CreateTensor(allocator, shape, shape_len, TypeToTensorType<T>::type);
}
inline Value Value::CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type) {
OrtValue* out;
ThrowOnError(GetApi().CreateTensorAsOrtValue(allocator, shape, shape_len, type, &out));
return Value{out};
}
#if !defined(DISABLE_SPARSE_TENSORS)
template <typename T>
inline Value Value::CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape,
const Shape& values_shape) {
return CreateSparseTensor(info, p_data, dense_shape, values_shape, TypeToTensorType<T>::type);
}
inline Value Value::CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape,
const Shape& values_shape, ONNXTensorElementDataType type) {
OrtValue* out;
ThrowOnError(GetApi().CreateSparseTensorWithValuesAsOrtValue(info, p_data, dense_shape.shape, dense_shape.shape_len,
values_shape.shape, values_shape.shape_len, type, &out));
return Value{out};
}
template <typename T>
inline Value Value::CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape) {
return CreateSparseTensor(allocator, dense_shape, TypeToTensorType<T>::type);
}
inline Value Value::CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape,
ONNXTensorElementDataType type) {
OrtValue* out;
ThrowOnError(GetApi().CreateSparseTensorAsOrtValue(allocator, dense_shape.shape, dense_shape.shape_len, type, &out));
return Value{out};
}
#endif // !defined(DISABLE_SPARSE_TENSORS)
inline Value Value::CreateMap(Value& keys, Value& values) {
OrtValue* out;
OrtValue* inputs[2] = {keys, values};
ThrowOnError(GetApi().CreateValue(inputs, 2, ONNX_TYPE_MAP, &out));
return Value{out};
}
inline Value Value::CreateSequence(std::vector<Value>& values) {
OrtValue* out;
std::vector<OrtValue*> values_ort{values.data(), values.data() + values.size()};
ThrowOnError(GetApi().CreateValue(values_ort.data(), values_ort.size(), ONNX_TYPE_SEQUENCE, &out));
return Value{out};
}
template <typename T>
inline Value Value::CreateOpaque(const char* domain, const char* type_name, const T& data_container) {
OrtValue* out;
ThrowOnError(GetApi().CreateOpaqueValue(domain, type_name, &data_container, sizeof(T), &out));
return Value{out};
}
//
// Custom OP Inlines
//
inline KernelContext::KernelContext(OrtKernelContext* context) : ctx_(context) {
}
inline size_t KernelContext::GetInputCount() const {
size_t out = 0;
Ort::ThrowOnError(GetApi().KernelContext_GetInputCount(ctx_, &out));
return out;
}
inline size_t KernelContext::GetOutputCount() const {
size_t out = 0;
Ort::ThrowOnError(GetApi().KernelContext_GetOutputCount(ctx_, &out));
return out;
}
inline ConstValue KernelContext::GetInput(size_t index) const {
const OrtValue* out = nullptr;
Ort::ThrowOnError(GetApi().KernelContext_GetInput(ctx_, index, &out));
return ConstValue{out};
}
inline UnownedValue KernelContext::GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const {
OrtValue* out = nullptr;
Ort::ThrowOnError(GetApi().KernelContext_GetOutput(ctx_, index, dim_values, dim_count, &out));
return UnownedValue(out);
}
inline UnownedValue KernelContext::GetOutput(size_t index, const std::vector<int64_t>& dims) const {
OrtValue* out = nullptr;
Ort::ThrowOnError(GetApi().KernelContext_GetOutput(ctx_, index, dims.data(), dims.size(), &out));
return UnownedValue(out);
}
inline void* KernelContext::GetGPUComputeStream() const {
void* out = nullptr;
Ort::ThrowOnError(GetApi().KernelContext_GetGPUComputeStream(ctx_, &out));
return out;
}
inline OpAttr::OpAttr(const char* name, const void* data, int len, OrtOpAttrType type) {
Ort::ThrowOnError(GetApi().CreateOpAttr(name, data, len, type, &p_));
}
namespace detail {
template <typename T>
inline KernelInfo KernelInfoImpl<T>::Copy() const {
OrtKernelInfo* info_copy = nullptr;
Ort::ThrowOnError(GetApi().CopyKernelInfo(this->p_, &info_copy));
return KernelInfo{info_copy};
}
template <typename T>
inline size_t KernelInfoImpl<T>::GetInputCount() const {
size_t out = 0;
ThrowOnError(GetApi().KernelInfo_GetInputCount(this->p_, &out));
return out;
}
template <typename T>
inline size_t KernelInfoImpl<T>::GetOutputCount() const {
size_t out = 0;
ThrowOnError(GetApi().KernelInfo_GetOutputCount(this->p_, &out));
return out;
}
template <typename T>
inline std::string KernelInfoImpl<T>::GetInputName(size_t index) const {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the string value
Ort::ThrowOnError(GetApi().KernelInfo_GetInputName(this->p_, index, nullptr, &size));
std::string out;
out.resize(size);
Ort::ThrowOnError(GetApi().KernelInfo_GetInputName(this->p_, index, &out[0], &size));
out.resize(size - 1); // remove the terminating character '\0'
return out;
}
template <typename T>
inline std::string KernelInfoImpl<T>::GetOutputName(size_t index) const {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the string value
Ort::ThrowOnError(GetApi().KernelInfo_GetOutputName(this->p_, index, nullptr, &size));
std::string out;
out.resize(size);
Ort::ThrowOnError(GetApi().KernelInfo_GetOutputName(this->p_, index, &out[0], &size));
out.resize(size - 1); // remove the terminating character '\0'
return out;
}
template <typename T>
inline TypeInfo KernelInfoImpl<T>::GetInputTypeInfo(size_t index) const {
OrtTypeInfo* out = nullptr;
ThrowOnError(GetApi().KernelInfo_GetInputTypeInfo(this->p_, index, &out));
return TypeInfo{out};
}
template <typename T>
inline TypeInfo KernelInfoImpl<T>::GetOutputTypeInfo(size_t index) const {
OrtTypeInfo* out = nullptr;
ThrowOnError(GetApi().KernelInfo_GetOutputTypeInfo(this->p_, index, &out));
return TypeInfo{out};
}
template <typename T>
inline Value KernelInfoImpl<T>::GetTensorAttribute(const char* name, OrtAllocator* allocator) const {
OrtValue* out = nullptr;
ThrowOnError(GetApi().KernelInfoGetAttribute_tensor(this->p_, name, allocator, &out));
return Value{out};
}
inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, float& out) {
Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_float(p, name, &out));
}
inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, int64_t& out) {
Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_int64(p, name, &out));
}
inline void attr_utils::GetAttr(const OrtKernelInfo* p, const char* name, std::string& result) {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the string attribute
Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_string(p, name, nullptr, &size));
std::string out;
out.resize(size);
Ort::ThrowOnError(GetApi().KernelInfoGetAttribute_string(p, name, &out[0], &size));
out.resize(size - 1); // remove the terminating character '\0'
out.swap(result);
}
inline void attr_utils::GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<float>& result) {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the attribute
Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_float(p, name, nullptr, &size));
std::vector<float> out;
out.resize(size);
Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_float(p, name, out.data(), &size));
out.swap(result);
}
inline void attr_utils::GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<int64_t>& result) {
size_t size = 0;
// Feed nullptr for the data buffer to query the true size of the attribute
Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_int64(p, name, nullptr, &size));
std::vector<int64_t> out;
out.resize(size);
Ort::ThrowOnError(GetApi().KernelInfoGetAttributeArray_int64(p, name, out.data(), &size));
out.swap(result);
}
} // namespace detail
inline KernelInfo::KernelInfo(OrtKernelInfo* info) : detail::KernelInfoImpl<OrtKernelInfo>{info} {}
inline Op::Op(OrtOp* p) : Base<OrtOp>(p) {}
inline Op Op::Create(const OrtKernelInfo* info, const char* op_name, const char* domain, int version,
const char** type_constraint_names,
const ONNXTensorElementDataType* type_constraint_values,
size_t type_constraint_count,
const OpAttr* attr_values, size_t attr_count,
size_t input_count, size_t output_count) {
static_assert(sizeof(OpAttr) == sizeof(OrtOpAttr*),
"OpAttr's is expected to be just an array of OrtOpAttr in memory so we can reinterpret safely");
auto attr_input_values = reinterpret_cast<const OrtOpAttr* const*>(attr_values);
OrtOp* op;
Ort::ThrowOnError(GetApi().CreateOp(info, op_name, domain, version, type_constraint_names, type_constraint_values,
static_cast<int>(type_constraint_count),
attr_input_values,
static_cast<int>(attr_count),
static_cast<int>(input_count),
static_cast<int>(output_count), &op));
return Op{op};
}
inline void Op::Invoke(const OrtKernelContext* context,
const Value* input_values,
size_t input_count,
Value* output_values,
size_t output_count) {
static_assert(sizeof(Value) == sizeof(OrtValue*),
"Value is really just an array of OrtValue* in memory, so we can reinterpret_cast safely");
auto ort_input_values = reinterpret_cast<const OrtValue* const*>(input_values);
auto ort_output_values = reinterpret_cast<OrtValue**>(output_values);
Ort::ThrowOnError(GetApi().InvokeOp(context, p_, ort_input_values, static_cast<int>(input_count),
ort_output_values, static_cast<int>(output_count)));
}
inline void Op::Invoke(const OrtKernelContext* context,
const OrtValue* const* input_values,
size_t input_count,
OrtValue* const* output_values,
size_t output_count) {
Ort::ThrowOnError(GetApi().InvokeOp(context, p_, input_values, static_cast<int>(input_count),
output_values, static_cast<int>(output_count)));
}
inline void CustomOpApi::ThrowOnError(OrtStatus* status) {
Ort::ThrowOnError(status);
}
template <>
inline float CustomOpApi::KernelInfoGetAttribute<float>(_In_ const OrtKernelInfo* info, _In_ const char* name) {
float out;
Ort::ThrowOnError(api_.KernelInfoGetAttribute_float(info, name, &out));
return out;
}
template <>
inline int64_t CustomOpApi::KernelInfoGetAttribute<int64_t>(_In_ const OrtKernelInfo* info, _In_ const char* name) {
int64_t out;
Ort::ThrowOnError(api_.KernelInfoGetAttribute_int64(info, name, &out));
return out;
}
template <>
inline std::string CustomOpApi::KernelInfoGetAttribute<std::string>(_In_ const OrtKernelInfo* info, _In_ const char* name) {
size_t size = 0;
std::string out;
// Feed nullptr for the data buffer to query the true size of the string attribute
OrtStatus* status = api_.KernelInfoGetAttribute_string(info, name, nullptr, &size);
if (status == nullptr) {
out.resize(size);
Ort::ThrowOnError(api_.KernelInfoGetAttribute_string(info, name, &out[0], &size));
out.resize(size - 1); // remove the terminating character '\0'
} else {
Ort::ThrowOnError(status);
}
return out;
}
template <>
inline std::vector<float> CustomOpApi::KernelInfoGetAttribute(_In_ const OrtKernelInfo* info, _In_ const char* name) {
size_t size = 0;
std::vector<float> out;
// Feed nullptr for the data buffer to query the true size of the attribute
OrtStatus* status = api_.KernelInfoGetAttributeArray_float(info, name, nullptr, &size);
if (status == nullptr) {
out.resize(size);
Ort::ThrowOnError(api_.KernelInfoGetAttributeArray_float(info, name, out.data(), &size));
} else {
Ort::ThrowOnError(status);
}
return out;
}
template <>
inline std::vector<int64_t> CustomOpApi::KernelInfoGetAttribute(_In_ const OrtKernelInfo* info, _In_ const char* name) {
size_t size = 0;
std::vector<int64_t> out;
// Feed nullptr for the data buffer to query the true size of the attribute
OrtStatus* status = api_.KernelInfoGetAttributeArray_int64(info, name, nullptr, &size);
if (status == nullptr) {
out.resize(size);
Ort::ThrowOnError(api_.KernelInfoGetAttributeArray_int64(info, name, out.data(), &size));
} else {
Ort::ThrowOnError(status);
}
return out;
}
inline OrtTensorTypeAndShapeInfo* CustomOpApi::GetTensorTypeAndShape(_In_ const OrtValue* value) {
OrtTensorTypeAndShapeInfo* out;
Ort::ThrowOnError(api_.GetTensorTypeAndShape(value, &out));
return out;
}
inline size_t CustomOpApi::GetTensorShapeElementCount(_In_ const OrtTensorTypeAndShapeInfo* info) {
size_t out;
Ort::ThrowOnError(api_.GetTensorShapeElementCount(info, &out));
return out;
}
inline ONNXTensorElementDataType CustomOpApi::GetTensorElementType(const OrtTensorTypeAndShapeInfo* info) {
ONNXTensorElementDataType out;
Ort::ThrowOnError(api_.GetTensorElementType(info, &out));
return out;
}
inline size_t CustomOpApi::GetDimensionsCount(_In_ const OrtTensorTypeAndShapeInfo* info) {
size_t out;
Ort::ThrowOnError(api_.GetDimensionsCount(info, &out));
return out;
}
inline void CustomOpApi::GetDimensions(_In_ const OrtTensorTypeAndShapeInfo* info, _Out_ int64_t* dim_values, size_t dim_values_length) {
Ort::ThrowOnError(api_.GetDimensions(info, dim_values, dim_values_length));
}
inline void CustomOpApi::SetDimensions(OrtTensorTypeAndShapeInfo* info, _In_ const int64_t* dim_values, size_t dim_count) {
Ort::ThrowOnError(api_.SetDimensions(info, dim_values, dim_count));
}
template <typename T>
inline T* CustomOpApi::GetTensorMutableData(_Inout_ OrtValue* value) {
T* data;
Ort::ThrowOnError(api_.GetTensorMutableData(value, reinterpret_cast<void**>(&data)));
return data;
}
inline const OrtMemoryInfo* CustomOpApi::GetTensorMemoryInfo(_In_ const OrtValue* value) {
const OrtMemoryInfo* mem_info;
Ort::ThrowOnError(api_.GetTensorMemoryInfo(value, &mem_info));
return mem_info;
}
template <typename T>
inline const T* CustomOpApi::GetTensorData(_Inout_ const OrtValue* value) {
T* data = nullptr;
Ort::ThrowOnError(api_.GetTensorMutableData(const_cast<OrtValue*>(value), reinterpret_cast<void**>(&data)));
return data;
}
inline std::vector<int64_t> CustomOpApi::GetTensorShape(const OrtTensorTypeAndShapeInfo* info) {
size_t out;
Ort::ThrowOnError(api_.GetDimensionsCount(info, &out));
std::vector<int64_t> output(out);
Ort::ThrowOnError(api_.GetDimensions(info, output.data(), out));
return output;
}
inline void CustomOpApi::ReleaseTensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* input) {
api_.ReleaseTensorTypeAndShapeInfo(input);
}
inline size_t CustomOpApi::KernelContext_GetInputCount(const OrtKernelContext* context) {
size_t out;
Ort::ThrowOnError(api_.KernelContext_GetInputCount(context, &out));
return out;
}
inline const OrtValue* CustomOpApi::KernelContext_GetInput(const OrtKernelContext* context, _In_ size_t index) {
const OrtValue* out;
Ort::ThrowOnError(api_.KernelContext_GetInput(context, index, &out));
return out;
}
inline size_t CustomOpApi::KernelContext_GetOutputCount(const OrtKernelContext* context) {
size_t out;
Ort::ThrowOnError(api_.KernelContext_GetOutputCount(context, &out));
return out;
}
inline OrtValue* CustomOpApi::KernelContext_GetOutput(OrtKernelContext* context, _In_ size_t index,
_In_ const int64_t* dim_values, size_t dim_count) {
OrtValue* out;
Ort::ThrowOnError(api_.KernelContext_GetOutput(context, index, dim_values, dim_count, &out));
return out;
}
inline void* CustomOpApi::KernelContext_GetGPUComputeStream(const OrtKernelContext* context) {
void* out;
Ort::ThrowOnError(api_.KernelContext_GetGPUComputeStream(context, &out));
return out;
}
inline OrtOpAttr* CustomOpApi::CreateOpAttr(_In_ const char* name,
_In_ const void* data,
_In_ int len,
_In_ OrtOpAttrType type) {
OrtOpAttr* op_attr{};
Ort::ThrowOnError(api_.CreateOpAttr(name, data, len, type, &op_attr));
return op_attr;
}
inline void CustomOpApi::ReleaseOpAttr(_Frees_ptr_opt_ OrtOpAttr* op_attr) {
api_.ReleaseOpAttr(op_attr);
}
inline OrtOp* CustomOpApi::CreateOp(_In_ const OrtKernelInfo* info,
_In_ const char* op_name,
_In_ const char* domain,
_In_ int version,
_In_opt_ const char** type_constraint_names,
_In_opt_ const ONNXTensorElementDataType* type_constraint_values,
_In_opt_ int type_constraint_count,
_In_opt_ const OrtOpAttr* const* attr_values,
_In_opt_ int attr_count,
_In_ int input_count,
_In_ int output_count) {
OrtOp* ort_op{};
Ort::ThrowOnError(api_.CreateOp(info, op_name, domain, version, type_constraint_names, type_constraint_values,
type_constraint_count, attr_values, attr_count, input_count, output_count, &ort_op));
return ort_op;
}
inline void CustomOpApi::InvokeOp(_In_ const OrtKernelContext* context,
_In_ const OrtOp* ort_op,
_In_ const OrtValue* const* input_values,
_In_ int input_count,
_Inout_ OrtValue* const* output_values,
_In_ int output_count) {
Ort::ThrowOnError(api_.InvokeOp(context, ort_op, input_values, input_count, output_values, output_count));
}
inline void CustomOpApi::ReleaseOp(_Frees_ptr_opt_ OrtOp* ort_op) {
api_.ReleaseOp(ort_op);
}
inline OrtKernelInfo* CustomOpApi::CopyKernelInfo(_In_ const OrtKernelInfo* info) {
OrtKernelInfo* info_copy{};
Ort::ThrowOnError(api_.CopyKernelInfo(info, &info_copy));
return info_copy;
}
inline void CustomOpApi::ReleaseKernelInfo(_Frees_ptr_opt_ OrtKernelInfo* info_copy) {
api_.ReleaseKernelInfo(info_copy);
}
inline std::vector<std::string> GetAvailableProviders() {
int len;
char** providers;
ThrowOnError(GetApi().GetAvailableProviders(&providers, &len));
std::vector<std::string> available_providers(providers, providers + len);
ThrowOnError(GetApi().ReleaseAvailableProviders(providers, len));
return available_providers;
}
SessionOptions& AddInitializer(const char* name, const OrtValue* ort_val);
template <typename TOp, typename TKernel>
void CustomOpBase<TOp, TKernel>::GetSessionConfigs(std::unordered_map<std::string, std::string>& out,
ConstSessionOptions options) const {
const TOp* derived = static_cast<const TOp*>(this);
std::vector<std::string> keys = derived->GetSessionConfigKeys();
out.reserve(keys.size());
std::string config_entry_key = detail::MakeCustomOpConfigEntryKey(derived->GetName(), "");
const size_t prefix_size = config_entry_key.length();
for (const auto& key : keys) {
config_entry_key.resize(prefix_size);
config_entry_key.append(key);
out[key] = options.GetConfigEntryOrDefault(config_entry_key.c_str(), "");
}
}
} // namespace Ort
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
/*
* This file defines RunOptions Config Keys and format of the Config Values.
*
* The Naming Convention for a RunOptions Config Key,
* "[Area][.[SubArea1].[SubArea2]...].[Keyname]"
* Such as "ep.cuda.use_arena"
* The Config Key cannot be empty
* The maximum length of the Config Key is 128
*
* The string format of a RunOptions Config Value is defined individually for each Config.
* The maximum length of the Config Value is 1024
*/
// Key for enabling shrinkages of user listed device memory arenas.
// Expects a list of semi-colon separated key value pairs separated by colon in the following format:
// "device_0:device_id_0;device_1:device_id_1"
// No white-spaces allowed in the provided list string.
// Currently, the only supported devices are : "cpu", "gpu" (case sensitive).
// If "cpu" is included in the list, DisableCpuMemArena() API must not be called (i.e.) arena for cpu should be enabled.
// Example usage: "cpu:0;gpu:0" (or) "gpu:0"
// By default, the value for this key is empty (i.e.) no memory arenas are shrunk
static const char* const kOrtRunOptionsConfigEnableMemoryArenaShrinkage = "memory.enable_memory_arena_shrinkage";
// Set to '1' to not synchronize execution providers with CPU at the end of session run.
// Per default it will be set to '0'
// Taking CUDA EP as an example, it omit triggering cudaStreamSynchronize on the compute stream.
static const char* const kOrtRunOptionsConfigDisableSynchronizeExecutionProviders = "disable_synchronize_execution_providers";
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
/*
* This file defines SessionOptions Config Keys and format of the Config Values.
*
* The Naming Convention for a SessionOptions Config Key,
* "[Area][.[SubArea1].[SubArea2]...].[Keyname]"
* Such as "ep.cuda.use_arena"
* The Config Key cannot be empty
* The maximum length of the Config Key is 128
*
* The string format of a SessionOptions Config Value is defined individually for each Config.
* The maximum length of the Config Value is 1024
*/
// Key for disable PrePacking,
// If the config value is set to "1" then the prepacking is disabled, otherwise prepacking is enabled (default value)
static const char* const kOrtSessionOptionsConfigDisablePrepacking = "session.disable_prepacking";
// A value of "1" means allocators registered in the env will be used. "0" means the allocators created in the session
// will be used. Use this to override the usage of env allocators on a per session level.
static const char* const kOrtSessionOptionsConfigUseEnvAllocators = "session.use_env_allocators";
// Set to 'ORT' (case sensitive) to load an ORT format model.
// If unset, model type will default to ONNX unless inferred from filename ('.ort' == ORT format) or bytes to be ORT
static const char* const kOrtSessionOptionsConfigLoadModelFormat = "session.load_model_format";
// Set to 'ORT' (case sensitive) to save optimized model in ORT format when SessionOptions.optimized_model_path is set.
// If unset, format will default to ONNX unless optimized_model_filepath ends in '.ort'.
static const char* const kOrtSessionOptionsConfigSaveModelFormat = "session.save_model_format";
// If a value is "1", flush-to-zero and denormal-as-zero are applied. The default is "0".
// When multiple sessions are created, a main thread doesn't override changes from succeeding session options,
// but threads in session thread pools follow option changes.
// When ORT runs with OpenMP, the same rule is applied, i.e. the first session option to flush-to-zero and
// denormal-as-zero is only applied to global OpenMP thread pool, which doesn't support per-session thread pool.
// Note that an alternative way not using this option at runtime is to train and export a model without denormals
// and that's recommended because turning this option on may hurt model accuracy.
static const char* const kOrtSessionOptionsConfigSetDenormalAsZero = "session.set_denormal_as_zero";
// It controls to run quantization model in QDQ (QuantizelinearDeQuantizelinear) format or not.
// "0": enable. ORT does fusion logic for QDQ format.
// "1": disable. ORT doesn't do fusion logic for QDQ format.
// Its default value is "0"
static const char* const kOrtSessionOptionsDisableQuantQDQ = "session.disable_quant_qdq";
// It controls whether to enable Double QDQ remover and Identical Children Consolidation
// "0": not to disable. ORT does remove the middle 2 Nodes from a Q->(QD->Q)->QD pairs
// "1": disable. ORT doesn't remove the middle 2 Nodes from a Q->(QD->Q)->QD pairs
// Its default value is "0"
static const char* const kOrtSessionOptionsDisableDoubleQDQRemover = "session.disable_double_qdq_remover";
// If set to "1", enables the removal of QuantizeLinear/DequantizeLinear node pairs once all QDQ handling has been
// completed. e.g. If after all QDQ handling has completed and we have -> FloatOp -> Q -> DQ -> FloatOp -> the
// Q -> DQ could potentially be removed. This will provide a performance benefit by avoiding going from float to
// 8-bit and back to float, but could impact accuracy. The impact on accuracy will be model specific and depend on
// other factors like whether the model was created using Quantization Aware Training or Post Training Quantization.
// As such, it's best to test to determine if enabling this works well for your scenario.
// The default value is "0"
// Available since version 1.11.
static const char* const kOrtSessionOptionsEnableQuantQDQCleanup = "session.enable_quant_qdq_cleanup";
// Enable or disable gelu approximation in graph optimization. "0": disable; "1": enable. The default is "0".
// GeluApproximation has side effects which may change the inference results. It is disabled by default due to this.
static const char* const kOrtSessionOptionsEnableGeluApproximation = "optimization.enable_gelu_approximation";
#ifdef ENABLE_TRAINING
// Specifies a list of op types for memory footprint reduction.
// The value should be a ","-delimited list of pair of
// <subgraph string : optimization strategy : number of subgraph to apply>.
// For example, "Gelu+Cast+:1:0,Dropout+:1:1".
// A valid "subgraph string" should be one subgraph representation output by ORT graph transformations.
// "optimization strategy" currently has valid values: 0 - disabled, 1 - recompute.
// "number of subgraph to apply" is used to control how many subgraphs to apply optimization, to avoid "oversaving"
// the memory.
static const char* const kOrtSessionOptionsMemoryOptimizerEnabler = "optimization.enable_memory_optimizer";
// Specifies the level for detecting subgraphs for memory footprint reduction.
// The value should be an integer. The default value is 0.
static const char* const kOrtSessionOptionsMemoryOptimizerProbeLevel = "optimization.enable_memory_probe_recompute_level";
#endif
// Enable or disable using device allocator for allocating initialized tensor memory. "1": enable; "0": disable. The default is "0".
// Using device allocators means the memory allocation is made using malloc/new.
static const char* const kOrtSessionOptionsUseDeviceAllocatorForInitializers = "session.use_device_allocator_for_initializers";
// Configure whether to allow the inter_op/intra_op threads spinning a number of times before blocking
// "0": thread will block if found no job to run
// "1": default, thread will spin a number of times before blocking
static const char* const kOrtSessionOptionsConfigAllowInterOpSpinning = "session.inter_op.allow_spinning";
static const char* const kOrtSessionOptionsConfigAllowIntraOpSpinning = "session.intra_op.allow_spinning";
// Key for using model bytes directly for ORT format
// If a session is created using an input byte array contains the ORT format model data,
// By default we will copy the model bytes at the time of session creation to ensure the model bytes
// buffer is valid.
// Setting this option to "1" will disable copy the model bytes, and use the model bytes directly. The caller
// has to guarantee that the model bytes are valid until the ORT session using the model bytes is destroyed.
static const char* const kOrtSessionOptionsConfigUseORTModelBytesDirectly = "session.use_ort_model_bytes_directly";
/// <summary>
/// Key for using the ORT format model flatbuffer bytes directly for initializers.
/// This avoids copying the bytes and reduces peak memory usage during model loading and initialization.
/// Requires `session.use_ort_model_bytes_directly` to be true.
/// If set, the flatbuffer bytes provided when creating the InferenceSession MUST remain valid for the entire
/// duration of the InferenceSession.
/// </summary>
static const char* const kOrtSessionOptionsConfigUseORTModelBytesForInitializers =
"session.use_ort_model_bytes_for_initializers";
// This should only be specified when exporting an ORT format model for use on a different platform.
// If the ORT format model will be used on ARM platforms set to "1". For other platforms set to "0"
// Available since version 1.11.
static const char* const kOrtSessionOptionsQDQIsInt8Allowed = "session.qdqisint8allowed";
// x64 SSE4.1/AVX2/AVX512(with no VNNI) has overflow problem with quantizied matrix multiplication with U8S8.
// To avoid this we need to use slower U8U8 matrix multiplication instead. This option, if
// turned on, use slower U8U8 matrix multiplications. Only effective with AVX2 or AVX512
// platforms.
static const char* const kOrtSessionOptionsAvx2PrecisionMode = "session.x64quantprecision";
// Specifies how minimal build graph optimizations are handled in a full build.
// These optimizations are at the extended level or higher.
// Possible values and their effects are:
// "save": Save runtime optimizations when saving an ORT format model.
// "apply": Only apply optimizations available in a minimal build.
// ""/<unspecified>: Apply optimizations available in a full build.
// Available since version 1.11.
static const char* const kOrtSessionOptionsConfigMinimalBuildOptimizations =
"optimization.minimal_build_optimizations";
// Note: The options specific to an EP should be specified prior to appending that EP to the session options object in
// order for them to take effect.
// Specifies a list of stop op types. Nodes of a type in the stop op types and nodes downstream from them will not be
// run by the NNAPI EP.
// The value should be a ","-delimited list of op types. For example, "Add,Sub".
// If not specified, the default set of stop ops is used. To specify an empty stop ops types list and disable stop op
// exclusion, set the value to "".
static const char* const kOrtSessionOptionsConfigNnapiEpPartitioningStopOps = "ep.nnapi.partitioning_stop_ops";
// Enabling dynamic block-sizing for multithreading.
// With a positive value, thread pool will split a task of N iterations to blocks of size starting from:
// N / (num_of_threads * dynamic_block_base)
// As execution progresses, the size will decrease according to the diminishing residual of N,
// meaning the task will be distributed in smaller granularity for better parallelism.
// For some models, it helps to reduce the variance of E2E inference latency and boost performance.
// The feature will not function by default, specify any positive integer, e.g. "4", to enable it.
// Available since version 1.11.
static const char* const kOrtSessionOptionsConfigDynamicBlockBase = "session.dynamic_block_base";
// This option allows to decrease CPU usage between infrequent
// requests and forces any TP threads spinning stop immediately when the last of
// concurrent Run() call returns.
// Spinning is restarted on the next Run() call.
// Applies only to internal thread-pools
static const char* const kOrtSessionOptionsConfigForceSpinningStop = "session.force_spinning_stop";
// "1": all inconsistencies encountered during shape and type inference
// will result in failures.
// "0": in some cases warnings will be logged but processing will continue. The default.
// May be useful to expose bugs in models.
static const char* const kOrtSessionOptionsConfigStrictShapeTypeInference = "session.strict_shape_type_inference";
// The file saves configuration for partitioning node among logic streams
static const char* const kNodePartitionConfigFile = "session.node_partition_config_file";
// This Option allows setting affinities for intra op threads.
// Affinity string follows format:
// logical_processor_id,logical_processor_id;logical_processor_id,logical_processor_id
// Semicolon isolates configurations among threads, while comma split processors where ith thread expected to attach to.
// e.g.1,2,3;4,5
// specifies affinities for two threads, with the 1st thread attach to the 1st, 2nd, and 3rd processor, and 2nd thread to the 4th and 5th.
// To ease the configuration, an "interval" is also allowed:
// e.g. 1-8;8-16;17-24
// orders that the 1st thread runs on first eight processors, 2nd thread runs on next eight processors, and so forth.
// Note:
// 1. Once set, the number of thread affinities must equal to intra_op_num_threads - 1, since ort does not set affinity on the main thread which
// is started and managed by the calling app;
// 2. For windows, ort will infer the group id from a logical processor id, for example, assuming there are two groups with each has 64 logical processors,
// an id of 64 will be inferred as the last processor of the 1st group, while 65 will be interpreted as the 1st processor of the second group.
// Hence 64-65 is an invalid configuration, because a windows thread cannot be attached to processors across group boundary.
static const char* const kOrtSessionOptionsConfigIntraOpThreadAffinities = "session.intra_op_thread_affinities";
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
namespace onnxruntime {
// data types for execution provider options
using ProviderOptions = std::unordered_map<std::string, std::string>;
using ProviderOptionsVector = std::vector<ProviderOptions>;
using ProviderOptionsMap = std::unordered_map<std::string, ProviderOptions>;
} // namespace onnxruntime
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "onnxruntime_c_api.h"
#ifdef __cplusplus
extern "C" {
#endif
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_Tensorrt, _In_ OrtSessionOptions* options, int device_id);
#ifdef __cplusplus
}
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment