# ONNX Runtime ## 安装 ### 安装包安装 c++ 安装包下载:https://cancon.hpccube.com:65024/directlink/4/onnxruntime/dtk23.04/onnxruntime-lite-1.14.0+git81e68c5.abi0.dtk2304-linux_x86_64.run Python 安装包下载: Python3.7:https://cancon.hpccube.com:65024/directlink/4/onnxruntime/dtk23.04/onnxruntime-lite-1.14.0+git81e68c5.abi0.dtk2304-cp37-cp37m-manylinux2014_x86_64.whl Python3.8:https://cancon.hpccube.com:65024/directlink/4/onnxruntime/dtk23.04/onnxruntime-lite-1.14.0+git81e68c5.abi0.dtk2304-cp38-cp38-manylinux2014_x86_64.whl Python3.9:https://cancon.hpccube.com:65024/directlink/4/onnxruntime/dtk23.04/onnxruntime-lite-1.14.0+git81e68c5.abi0.dtk2304-cp39-cp39-manylinux2014_x86_64.whl 其他Python安装包可联系我们或者使用源码编译安装 ### 源码安装 #### 编译环境准备 1. 拉取镜像: ```shell docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:onnxruntime-1.14.0-DTK-22.10.1 (待修改,新镜像正在上传) ``` 2. 拉取源码: ```shell git clone http://10.0.50.24/dcutoolkit/deeplearing/onnxruntime.git ``` 3. 进行编译: ```shell #激活环境变量 source /opt/dtk/env.sh export amd_comgr_DIR=${ROCM_PATH}/lib64/cmake tar -zxvf ./cmake/external.tar.gz -C ./cmake/ tar -zxvf ./cmake/onnxruntimefiles.tar.gz -C /data/ sh OnnxRuntimeinstall.sh ``` 4. 安装Python安装包: ```shell #激活环境变量 pip install ./build/Linux/Release/dist/onnxruntime*.whl ``` 5. 编译C++ 项目所需文件: ```shell #激活环境变量 cd ./build/Linux/Release/ make package ``` ## 安装包命名 例:onnxruntime-lite-1.14.0+git81e68c5.abi0.dtk2304-cp39-cp39-manylinux2014_x86_64.whl - onnxruntime-lite: 安装包名称; - 1.14.0: 安装包版本号; - git81e68c5: git号; - abi0: 对应centos和rocky多系统的标识,取值为abi0(centos7),abi1(rocky8),可使用命令行动态查询获取辅助判断(echo '#include ' | gcc -x c++ -E -dM - | fgrep _GLIBCXX_USE_CXX11_ABI); - dtk2304: 对应dtk大版本号,命令行动态查询取值(/opt/dtk-23.04/.info/rocm_version); - cp39-cp39: 对应python版本号; - manylinux2014_x86_64: 系统架构; ## 版本号查询 - onnxruntime.\_\_version__:与官方版本同步,查询该安装包的版本号,例如1.14.0(基于官方1.14.0修改); ## 参考 - [README_ORIGIN](README_ORIGIN.md)