/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include TEST_CASE(convert_downcast_overflow_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::float_type, {2, 2}}; std::vector data(4, 2 * std::numeric_limits::max()); auto l = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction(migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of(results_vector.begin(), results_vector.end(), [](const auto& x) { return x == std::numeric_limits::max(); })); } TEST_CASE(convert_downcast_underflow_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::float_type, {2, 2}}; std::vector data(4, 2 * std::numeric_limits::lowest()); auto l = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction(migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of(results_vector.begin(), results_vector.end(), [](const auto& x) { return x == std::numeric_limits::lowest(); })); } TEST_CASE(convert_nan_upcast_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::half_type, {2, 2}}; std::vector data(4, std::numeric_limits::quiet_NaN()); auto l = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4, -1); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of( results_vector.begin(), results_vector.end(), [](const auto& x) { return std::isnan(x); })); } TEST_CASE(convert_nan_downcast_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::double_type, {2, 2}}; std::vector data(4, std::numeric_limits::quiet_NaN()); auto l = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4, -1); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of( results_vector.begin(), results_vector.end(), [](const auto& x) { return std::isnan(x); })); } TEST_CASE(convert_nan_double_convert_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::double_type, {2, 2}}; std::vector data(4, std::numeric_limits::quiet_NaN()); auto l = mm->add_literal(migraphx::literal{s, data}); auto f_l = mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), l); mm->add_instruction(migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), f_l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of( results_vector.begin(), results_vector.end(), [](const auto& x) { return std::isnan(x); })); } TEST_CASE(convert_nan_convert_updown_test) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::float_type, {2, 2}}; std::vector data(4, std::numeric_limits::quiet_NaN()); auto l = mm->add_literal(migraphx::literal{s, data}); auto f_l = mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), l); auto h_l = mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), f_l); mm->add_instruction( migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), h_l); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector results_vector(4); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(std::all_of( results_vector.begin(), results_vector.end(), [](const auto& x) { return std::isnan(x); })); }