/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_multinomial : op_parser { std::vector operators() const { return {{"Multinomial"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, const onnx_parser::node_info& info, std::vector args) const { if(args.empty()) MIGRAPHX_THROW("PARSE_MULTINOMIAL: no arguments given"); int dtype = 6; if(contains(info.attributes, "dtype")) dtype = info.attributes.at("dtype").i(); shape::type_t output_type = get_type(dtype); size_t sample_size = 1; if(contains(info.attributes, "sample_size")) sample_size = info.attributes.at("sample_size").i(); else MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given"); // Use logarithmic math to scale probabilities while avoiding division by very // small numbers. Scaling by the maximum makes very tiny ranges more // tractable; any constant factor gives equivalent distr. since the Multinomial op. // normalizes at runtime. // Subtract the per-batch maximum log-probability, making the per-batch max 0 auto maxes = info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]); auto cdf = info.add_common_op("sub", args[0], maxes); // Take the element-wise exponent to get probabilities in the range (0, 1] cdf = info.add_instruction(migraphx::make_op("exp"), cdf); // Compute the cumulative distribution function cdf = info.add_instruction( migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); instruction_ref seed_input; if(contains(info.attributes, "seed")) { float seed = info.attributes.at("seed").f(); migraphx::shape s{migraphx::shape::float_type, {1}}; std::vector data = {seed}; seed_input = info.add_literal(migraphx::literal(s, data)); } else { seed_input = info.add_instruction(migraphx::make_op("random_seed")); } instruction_ref randoms; shape s0 = args[0]->get_shape(); if(s0.dynamic()) { // Dynamic batch_size will be taken from args[0]. The input argument to this should // have a second dimension of sample_size. std::vector dyn_dim_set; dyn_dim_set.emplace_back(s0.dyn_dims().front()); dyn_dim_set.emplace_back(shape::dynamic_dimension{sample_size, sample_size}); // read the input dimensions auto dim_of = info.add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), args[0]); // The next two operations insert the value sample_size into the second array position // make an argument of (1, 0) shape s(shape::int64_type, {2}); std::vector data1{1, 0}; auto l1 = info.add_literal(s, data1); auto batch_arg = info.add_instruction(migraphx::make_op("mul"), dim_of, l1); std::vector data2(2, 0); // make an argument of (0, sample_size) data2[1] = sample_size; auto l2 = info.add_literal(s, data2); auto alloc_shape = info.add_instruction(migraphx::make_op("add"), batch_arg, l2); // alloc_shape should contain the input-based shape dimensions as its values at runtime, // and its own shape is {2} // compile_shape is the shape used when compiling the Allocate op, and may be dynamic migraphx::shape compile_shape = migraphx::shape(s0.type(), {s0.dyn_dims().front(), {sample_size, sample_size}}); // Allocate on-device storage for the random values auto alloc = info.add_instruction( migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape); randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc); } else { // use literal. The array populated by random_uniform may have any shape, as long its // number of elements is batch_size * sample_size . size_t batch_size = s0.lens().front(); auto rand_dummy = info.add_literal( migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}}); randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy); } return info.add_instruction( migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx