/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { // Parser for LpNormalization ONNX operator. /*! Normalizes a tensor by the L1 or L2 norms along a given axis. Norms that evaluate to 0 are changed to 1 to prevent division by zero. */ struct parse_lpnormalization : op_parser { std::vector operators() const { return {{"LpNormalization"}}; } instruction_ref parse(const op_desc&, const onnx_parser&, const onnx_parser::node_info& info, std::vector args) const { int p = 2; if(contains(info.attributes, "p")) { p = info.attributes.at("p").i(); } if(p != 1 and p != 2) { MIGRAPHX_THROW("LPNORMALIZATION: only L1 and L2 norm supported"); } auto input = args.front(); auto input_shape = input->get_shape(); const auto& input_lens = input_shape.lens(); auto input_type = input_shape.type(); std::ptrdiff_t num_axes = input_lens.size(); std::ptrdiff_t axis = -1; if(contains(info.attributes, "axis")) { axis = info.attributes.at("axis").i(); if(axis < -num_axes or axis >= num_axes) { // handled in normalize_attributes but throwing here might be clearer MIGRAPHX_THROW("LPNORMALIZATION: selected axis out of bounds"); } } migraphx::instruction_ref p_val; if(p == 1) { p_val = info.add_instruction(migraphx::make_op("abs"), input); } else { p_val = info.add_instruction(migraphx::make_op("mul"), input, input); } // need to check for zeros from lp norm to prevent division by zero // change them to 1 for the element-wise division auto norms = info.add_instruction(migraphx::make_op("reduce_sum", {{"axes", {axis}}}), p_val); if(p == 2) { norms = info.add_instruction(migraphx::make_op("sqrt"), norms); } // broadcast back to initial shape, negative axis option doesn't work with unidirectional norms = info.add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}), norms); auto zero_mb = info.add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}), info.add_literal(migraphx::literal{migraphx::shape{input_type}, {0.}})); auto one_mb = info.add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}), info.add_literal(migraphx::literal{migraphx::shape{input_type}, {1.}})); auto is_zero = info.add_instruction(migraphx::make_op("equal"), norms, zero_mb); auto norms_zeros_to_one = info.add_instruction(migraphx::make_op("where"), is_zero, one_mb, norms); return info.add_instruction(migraphx::make_op("div"), input, norms_zeros_to_one); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx