#include #include #include #include #include #include #include #include void run_pass(migraphx::program& p) { migraphx::run_passes(p, {migraphx::simplify_reshapes{}, migraphx::dead_code_elimination{}}); } TEST_CASE(double_contig) { migraphx::program p; auto l = p.add_literal(get_2x2()); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0}}, l); auto c1 = p.add_instruction(migraphx::op::contiguous{}, t1); auto c2 = p.add_instruction(migraphx::op::contiguous{}, c1); p.add_return({c2}); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); EXPECT(std::distance(p.begin(), p.end()) == 4); auto result = p.eval({}).back(); EXPECT(result != get_2x2()); } TEST_CASE(double_transpose) { migraphx::program p; auto l = p.add_literal(get_2x2()); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0}}, l); auto t2 = p.add_instruction(migraphx::op::transpose{{1, 0}}, t1); p.add_return({t2}); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); EXPECT(std::distance(p.begin(), p.end()) == 2); auto result = p.eval({}).back(); EXPECT(result == get_2x2()); } TEST_CASE(double_transpose_contig) { migraphx::program p; auto l = p.add_literal(get_2x2()); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0}}, l); auto c1 = p.add_instruction(migraphx::op::contiguous{}, t1); auto t2 = p.add_instruction(migraphx::op::transpose{{1, 0}}, c1); auto c2 = p.add_instruction(migraphx::op::contiguous{}, t2); p.add_return({c2}); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); EXPECT(std::distance(p.begin(), p.end()) == 2); auto result = p.eval({}).back(); EXPECT(result == get_2x2()); } TEST_CASE(single_transpose) { migraphx::program p; auto l = p.add_literal(get_2x2()); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0}}, l); p.add_return({t1}); EXPECT(not p.get_output_shapes().back().standard()); EXPECT(p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(not p.get_output_shapes().back().standard()); EXPECT(p.get_output_shapes().back().transposed()); EXPECT(std::distance(p.begin(), p.end()) == 3); auto result = p.eval({}).back(); EXPECT(result != get_2x2()); } TEST_CASE(double_transpose_sin_pass) { migraphx::program p; auto l = p.add_literal(get_2x2()); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0}}, l); p.add_instruction(migraphx::op::transpose{{1, 0}}, t1); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(p.get_output_shapes().back().standard()); EXPECT(not p.get_output_shapes().back().transposed()); // TODO: Fix this // EXPECT(std::distance(p.begin(), p.end()) == 1); auto result = p.eval({}).back(); EXPECT(result == get_2x2()); } TEST_CASE(single_transpose_sin_pass) { migraphx::program p; auto l = p.add_literal(get_2x2()); p.add_instruction(migraphx::op::transpose{{1, 0}}, l); EXPECT(not p.get_output_shapes().back().standard()); EXPECT(p.get_output_shapes().back().transposed()); run_pass(p); EXPECT(not p.get_output_shapes().back().standard()); EXPECT(p.get_output_shapes().back().transposed()); EXPECT(std::distance(p.begin(), p.end()) == 2); auto result = p.eval({}).back(); EXPECT(result != get_2x2()); } TEST_CASE(reshape_transpose) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 112, 56, 56}}; auto x = p.add_parameter("x", s); auto r1 = p.add_instruction(migraphx::op::reshape{{1, 4, 28, 56, 56}}, x); auto t = p.add_instruction(migraphx::op::transpose{{0, 2, 1, 3, 4}}, r1); auto ct = p.add_instruction(migraphx::op::contiguous{}, t); auto r2 = p.add_instruction(migraphx::op::reshape{{1, 112, 56, 56}}, ct); p.add_return({r2}); EXPECT(p.get_output_shapes().back() == s); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == s); EXPECT(std::distance(p.begin(), p.end()) == n); } TEST_CASE(transpose_contiguous) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {4, 4}}; auto x = p.add_parameter("x", s); auto t = p.add_instruction(migraphx::op::transpose{{1, 0}}, x); auto c1 = p.add_instruction(migraphx::op::contiguous{}, t); p.add_return({c1}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n); } TEST_CASE(transpose_double_contiguous) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {4, 4}}; auto x = p.add_parameter("x", s); auto t = p.add_instruction(migraphx::op::transpose{{1, 0}}, x); auto c1 = p.add_instruction(migraphx::op::contiguous{}, t); auto c2 = p.add_instruction(migraphx::op::contiguous{}, c1); p.add_return({c2}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 1); EXPECT(p.has_instruction(t)); } TEST_CASE(transpose_partial1) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3}}; auto x = p.add_parameter("x", s); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, x); auto t2 = p.add_instruction(migraphx::op::transpose{{1, 2, 0}}, t1); p.add_return({t2}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 1); } TEST_CASE(transpose_partial2) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3}}; auto x = p.add_parameter("x", s); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, x); auto t2 = p.add_instruction(migraphx::op::transpose{{1, 2, 0}}, t1); auto t3 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, t2); p.add_return({t3}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 2); } TEST_CASE(transpose_partial3) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3}}; auto x = p.add_parameter("x", s); auto t1 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, x); auto t2 = p.add_instruction(migraphx::op::transpose{{1, 2, 0}}, t1); auto t3 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, t2); auto t4 = p.add_instruction(migraphx::op::transpose{{1, 0, 2}}, t3); p.add_return({t4}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 3); } TEST_CASE(nop_transpose1) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3}}; auto x = p.add_parameter("x", s); auto t = p.add_instruction(migraphx::op::transpose{{0, 1, 2}}, x); p.add_return({t}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 1); } TEST_CASE(nop_transpose2) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3}}; auto x = p.add_parameter("x", s); auto t1 = p.add_instruction(migraphx::op::transpose{{0, 1, 2}}, x); auto t2 = p.add_instruction(migraphx::op::transpose{{0, 1, 2}}, t1); auto t3 = p.add_instruction(migraphx::op::transpose{{0, 1, 2}}, t2); auto t4 = p.add_instruction(migraphx::op::transpose{{0, 1, 2}}, t3); p.add_instruction(pass_op{}, t4); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 4); } TEST_CASE(nop_transpose3) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", s); auto y = p.add_parameter("y", s); auto concat = p.add_instruction(migraphx::op::concat{3}, x, y); auto t1 = p.add_instruction(migraphx::op::transpose{{0, 1, 2, 3}}, concat); auto t2 = p.add_instruction(migraphx::op::transpose{{0, 1, 3, 2}}, t1); p.add_return({t2}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back() == out_shape); EXPECT(std::distance(p.begin(), p.end()) == n - 1); } TEST_CASE(concat_transpose1) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", s); auto y = p.add_parameter("y", s); auto xt = p.add_instruction(migraphx::op::transpose{{0, 1, 3, 2}}, x); auto yt = p.add_instruction(migraphx::op::transpose{{0, 1, 3, 2}}, y); auto concat = p.add_instruction(migraphx::op::concat{2}, xt, yt); auto t = p.add_instruction(migraphx::op::transpose{{0, 1, 3, 2}}, concat); p.add_return({t}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back().lens() == out_shape.lens()); EXPECT(std::distance(p.begin(), p.end()) == n - 3); auto new_concat = std::find_if(p.begin(), p.end(), [](auto ins) { return ins.name() == "concat"; }); EXPECT(bool{new_concat != p.end()}); EXPECT(migraphx::any_cast(new_concat->get_operator()).axis == 3); } TEST_CASE(concat_transpose2) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", s); auto y = p.add_parameter("y", s); auto xt = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, x); auto yt = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, y); auto concat = p.add_instruction(migraphx::op::concat{-1}, xt, yt); auto t = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, concat); p.add_return({t}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back().lens() == out_shape.lens()); EXPECT(std::distance(p.begin(), p.end()) == n - 2); auto new_concat = std::find_if(p.begin(), p.end(), [](auto ins) { return ins.name() == "concat"; }); EXPECT(bool{new_concat != p.end()}); EXPECT(migraphx::any_cast(new_concat->get_operator()).axis == 1); } TEST_CASE(concat_transpose3) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}); auto y = p.add_parameter("y", migraphx::shape{migraphx::shape::float_type, {1, 5, 3, 4}}); auto xt = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, x); auto yt = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, y); auto concat = p.add_instruction(migraphx::op::concat{3}, xt, yt); auto t = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, concat); p.add_return({t}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back().lens() == out_shape.lens()); EXPECT(std::distance(p.begin(), p.end()) == n - 2); auto new_concat = std::find_if(p.begin(), p.end(), [](auto ins) { return ins.name() == "concat"; }); EXPECT(bool{new_concat != p.end()}); EXPECT(migraphx::any_cast(new_concat->get_operator()).axis == 1); } TEST_CASE(concat_transpose4) { migraphx::program p; auto sx = migraphx::shape{migraphx::shape::float_type, {1, 1, 12, 64}}; auto sy = migraphx::shape{migraphx::shape::float_type, {1, 12, 1, 64}}; auto x = p.add_parameter("x", sx); auto y = p.add_parameter("y", sy); auto xt = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, x); auto yt = p.add_instruction(migraphx::op::transpose{{0, 1, 3, 2}}, y); auto concat = p.add_instruction(migraphx::op::concat{3}, xt, yt); auto t = p.add_instruction(migraphx::op::transpose{{0, 2, 3, 1}}, concat); p.add_return({t}); migraphx::program p1 = p; run_pass(p); EXPECT(p1 == p); } TEST_CASE(nested_concat) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", s); auto y = p.add_parameter("y", s); auto concat1 = p.add_instruction(migraphx::op::concat{1}, x, y); auto concat2 = p.add_instruction(migraphx::op::concat{1}, y, x); auto concat3 = p.add_instruction(migraphx::op::concat{1}, concat1, concat2); p.add_return({concat3}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back().lens() == out_shape.lens()); EXPECT(std::distance(p.begin(), p.end()) == n - 2); EXPECT(std::count_if(p.begin(), p.end(), [](auto ins) { return ins.name() == "concat"; }) == 1); } TEST_CASE(nested_concat_partial) { migraphx::program p; auto s = migraphx::shape{migraphx::shape::float_type, {1, 2, 3, 4}}; auto x = p.add_parameter("x", s); auto y = p.add_parameter("y", s); auto l = p.add_literal( migraphx::generate_literal(migraphx::shape{migraphx::shape::float_type, {1, 4, 3, 4}})); auto concat1 = p.add_instruction(migraphx::op::concat{1}, x, y); auto concat2 = p.add_instruction(migraphx::op::concat{1}, y, x); auto concat3 = p.add_instruction(migraphx::op::concat{1}, concat1, concat2, l); p.add_return({concat3}); auto out_shape = p.get_output_shapes().back(); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(p.get_output_shapes().back().lens() == out_shape.lens()); EXPECT(std::distance(p.begin(), p.end()) == n - 2); EXPECT(std::count_if(p.begin(), p.end(), [](auto ins) { return ins.name() == "concat"; }) == 1); } TEST_CASE(multibroadcast_simplify) { migraphx::program p; std::vector s_lens{1, 2, 3, 4}; auto s = migraphx::shape{migraphx::shape::float_type, s_lens}; auto x = p.add_parameter("x", s); auto y = p.add_instruction(migraphx::op::multibroadcast{s_lens}, x); p.add_instruction(migraphx::op::mul{}, y, y); auto n = std::distance(p.begin(), p.end()); run_pass(p); EXPECT(std::distance(p.begin(), p.end()) == n - 1); } TEST_CASE(double_slice1) { migraphx::program p1; { auto x = p1.add_parameter("x", {migraphx::shape::int32_type, {256}}); auto slice1 = p1.add_instruction(migraphx::op::slice{{0}, {32}, {256}}, x); auto slice2 = p1.add_instruction(migraphx::op::slice{{0}, {32}, {64}}, slice1); p1.add_return({slice2}); } run_pass(p1); migraphx::program p2; { auto x = p2.add_parameter("x", {migraphx::shape::int32_type, {256}}); auto slice = p2.add_instruction(migraphx::op::slice{{0}, {64}, {96}}, x); p2.add_return({slice}); } EXPECT(p1 == p2); } TEST_CASE(double_slice2) { migraphx::program p1; { auto x = p1.add_parameter("x", {migraphx::shape::int32_type, {256}}); auto slice1 = p1.add_instruction(migraphx::op::slice{{0}, {32}, {128}}, x); auto slice2 = p1.add_instruction(migraphx::op::slice{{0}, {0}, {32}}, slice1); p1.add_return({slice2}); } run_pass(p1); migraphx::program p2; { auto x = p2.add_parameter("x", {migraphx::shape::int32_type, {256}}); auto slice = p2.add_instruction(migraphx::op::slice{{0}, {32}, {64}}, x); p2.add_return({slice}); } EXPECT(p1 == p2); } TEST_CASE(double_slice_multi_axes) { migraphx::program p1; { auto x = p1.add_parameter("x", {migraphx::shape::int32_type, {256, 128}}); auto slice1 = p1.add_instruction(migraphx::op::slice{{0}, {32}, {128}}, x); auto slice2 = p1.add_instruction(migraphx::op::slice{{1}, {0}, {32}}, slice1); p1.add_return({slice2}); } run_pass(p1); migraphx::program p2; { auto x = p2.add_parameter("x", {migraphx::shape::int32_type, {256, 128}}); auto slice = p2.add_instruction(migraphx::op::slice{{0, 1}, {32, 0}, {128, 32}}, x); p2.add_return({slice}); } EXPECT(p1 == p2); } int main(int argc, const char* argv[]) { test::run(argc, argv); }