/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef MIGRAPHX_GUARD_OPERATORS_SLICE_HPP #define MIGRAPHX_GUARD_OPERATORS_SLICE_HPP #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace op { struct slice { std::vector axes; std::vector starts; std::vector ends; template static auto reflect(Self& self, F f) { return pack(f(self.axes, "axes"), f(self.starts, "starts"), f(self.ends, "ends")); } /** * Ensure that attribute vectors axes, starts, and ends are all the same size and values are in * limits. */ value attributes() const { value normalize = value::object{}; normalize["axes"] = value::array{normalize_attribute::include_min}; normalize["starts"] = value::array{normalize_attribute::clip_max, normalize_attribute::clip_min, normalize_attribute::include_max, normalize_attribute::use_len, normalize_attribute::include_min}; normalize["ends"] = value::array{normalize_attribute::clip_max, normalize_attribute::clip_min, normalize_attribute::include_max, normalize_attribute::use_len, normalize_attribute::include_min}; return {{"normalize_axes", normalize}}; } std::string name() const { return "slice"; } auto compute_offset(const shape& s) const { const std::vector& lens = s.lens(); const std::vector& strides = s.strides(); auto offset = 0; if(not axes.empty()) { for(std::size_t i = 0; i < axes.size(); i++) { auto axis = axes[i]; offset += starts[i] * strides[axis]; } } else { for(std::size_t axis = 0; axis < lens.size(); axis++) { offset += starts[axis] * strides[axis]; } } return offset; } shape normalize_compute_shape(std::vector inputs) const { check_shapes{inputs, *this, true}.has(1); auto input_shape = inputs[0]; auto t = input_shape.type(); // TODO: When support for dynamic shapes is added to normalize_attributes, // remove this restriction. if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) { return not input_shape.dyn_dims()[axis].is_fixed(); })) { MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis "); } // For a static shape, old_lens will be adjusted to a new size // for those axes that are sliced. // For dynamic shape, the adjusted old_lens become the new max values, // while updating the old mins and optimals if possible. std::vector new_mins; std::vector old_lens; std::vector old_strides; // Doesn't handle optimals if(input_shape.dynamic()) { old_lens = input_shape.max_lens(); new_mins = input_shape.min_lens(); } else { old_lens = input_shape.lens(); // For static shape (including during eval step after a dynamic input) the strides are // indexed into the pre-slice array, so they are larger than the apparent size of the // resulting shape. old_strides = input_shape.strides(); } std::vector new_lens = old_lens; for(std::size_t i = 0; i < axes.size(); i++) { auto axis = axes[i]; size_t sliced_length = ends[i] - starts[i]; // A Numpy indexing convention: a slice size larger than the actual dimension // is legal and the "ends" value is clipped to the axis size new_lens[axis] = std::min(new_lens[axis], sliced_length); if(input_shape.dynamic()) { // TODO: when non-fixed shape slicing is allowed, this will be different than // sliced_length, making use of TBD start/end values. std::size_t sliced_min_length = ends[i] - starts[i]; // if the slice size is smaller than maxes but larger than mins new_mins[axis] = std::min(sliced_min_length, new_mins[axis]); } } if(input_shape.dynamic()) { return shape{t, new_mins, new_lens, {}}; } else { return shape{t, new_lens, old_strides}; } } argument compute(const dyn_output& dyn_out, std::vector args) const { auto input = args[0]; auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size(); return {dyn_out.computed_shape, [=] { return input.data() + offset; }}; } std::ptrdiff_t output_alias(const std::vector&) const { return 0; } }; } // namespace op } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx #endif