/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { inline bool all_but_last_dims_equal(const std::vector& lens_a, const std::vector& lens_b) { if(lens_a.size() <= lens_b.size()) { return std::equal(lens_a.begin(), lens_a.end(), lens_b.begin()); } else { return std::equal(lens_b.begin(), lens_b.end(), lens_a.begin()); } }; void unsqueeze_last_op(module_ref mdl, int index, const std::vector& out_shape) { auto convert_ins = mdl->insert_instruction(std::prev(mdl->end()), make_op("unsqueeze", {{"axes", {out_shape.size() - 1}}}), std::prev(mdl->end())->inputs().at(index)); mdl->replace_instruction(std::prev(mdl->end())->inputs().at(index), convert_ins); } struct parse_if : op_parser { std::vector operators() const { return {{"If"}}; } std::vector parse(const op_desc& /*opd*/, onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { const auto& then_graph = info.attributes.at("then_branch").g(); const auto& else_graph = info.attributes.at("else_branch").g(); if(args.front()->get_shape().elements() != 1) { MIGRAPHX_THROW("PARSE_IF: " + info.name + " condition input can have only one element!"); } std::string then_name = info.name + "_if"; module_ref then_mdl = parser.prog.create_module(then_name); std::string else_name = info.name + "_else"; module_ref else_mdl = parser.prog.create_module(else_name); // parse the then sub_graph parser.parse_graph(then_mdl, then_graph); // parse_the else sub_graph parser.parse_graph(else_mdl, else_graph); auto then_out_shapes = then_mdl->get_output_shapes(); auto else_out_shapes = else_mdl->get_output_shapes(); auto throw_shapes = [&]() { MIGRAPHX_THROW("PARSE_IF: " + info.name + " then and else sub_graphs must have compatible shapes "); }; if(then_out_shapes.size() != else_out_shapes.size()) { throw_shapes(); } // Add checks for each output shape for(int i = 0; i < then_out_shapes.size(); i++) { const auto& then_out_shape = then_out_shapes.at(i); const auto& else_out_shape = else_out_shapes.at(i); // Must have the same type for both if/else blocks by onnx spec if(then_out_shape.type() != else_out_shape.type()) { MIGRAPHX_THROW("PARSE_IF: " + info.name + " then and else sub_grahps must have same output type! " + then_out_shape.type_string() + " vs " + else_out_shape.type_string()); } if(then_out_shape.dynamic() or else_out_shape.dynamic()) { continue; } auto then_lens = then_out_shape.lens(); auto else_lens = else_out_shape.lens(); // Throw error if both branches have zero output shapes. Not possible for static // inputs if(then_lens.empty() and else_lens.empty()) { throw_shapes(); } auto handle_empty_branch = [](module_ref& mdl, int index, const shape& out_shape) { shape gen_shape(shape(out_shape.type(), {1}, {0})); auto literal_ins = mdl->insert_literal(std::prev(mdl->end()), literal(gen_shape, {0})); auto unsqueeze_ins = mdl->insert_instruction( std::prev(mdl->end()), make_op("scalar", {{"scalar_bcst_dims", out_shape.lens()}}), literal_ins); auto broad_ins = mdl->insert_instruction( std::prev(mdl->end()), make_op("multibroadcast", {{"out_lens", out_shape.lens()}}), unsqueeze_ins); auto contig_out = mdl->insert_instruction( std::prev(mdl->end()), make_op("contiguous"), broad_ins); mdl->replace_instruction(std::prev(mdl->end())->inputs().at(index), contig_out); return out_shape.lens(); }; // Handle one empty branch by setting output identical to the other // need to update the then_shape before we do further checks if(then_lens.empty()) { then_lens = handle_empty_branch(then_mdl, i, else_out_shape); } else if(else_lens.empty()) { else_lens = handle_empty_branch(else_mdl, i, then_out_shape); } // check equivalent length dims, and (x1,x2,.., xn, 1) == (x1,x2,..,xn) int rank_delta = abs((static_cast(then_lens.size() - else_lens.size()))); if(rank_delta == 1) { // make sure dims are equivalent in static shapes if(not all_but_last_dims_equal(then_lens, else_lens)) { throw_shapes(); } auto last_then = then_lens.back(); auto last_else = else_lens.back(); // Find which dim to unsqueeze if((then_lens.size() < else_lens.size()) && (last_else == 1)) { unsqueeze_last_op(then_mdl, i, else_lens); } else if((then_lens.size() > else_lens.size()) && (last_then == 1)) { unsqueeze_last_op(else_mdl, i, then_lens); } } else if(rank_delta > 1) { throw_shapes(); } } auto if_ret = info.add_instruction(make_op("if"), args, {then_mdl, else_mdl}); auto out_s = if_ret->get_shape(); assert(out_s.type() == shape::tuple_type); const auto& vec_shapes = out_s.sub_shapes(); std::vector out_inss; for(std::size_t i = 0; i < vec_shapes.size(); ++i) { auto ret = info.add_instruction(make_op("get_tuple_elem", {{"index", i}}), if_ret); out_inss.push_back(ret); } return out_inss; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx