/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "verify_program.hpp" #include #include #include #include struct test_conv_bn_relu_pooling2 : verify_program { static migraphx::instruction_ref add_bn(migraphx::program& p, migraphx::instruction_ref x, std::size_t channels) { auto* mm = p.get_main_module(); migraphx::shape vars{migraphx::shape::float_type, {channels}}; auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1 + channels))); auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2 + channels))); auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 3 + channels))); auto variance = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4 + channels))); return mm->add_instruction( migraphx::make_op("batch_norm_inference"), x, scale, bias, mean, variance); } migraphx::program create_program() const { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape xs1{migraphx::shape::float_type, {1, 512, 7, 7}}; migraphx::shape xs2{migraphx::shape::float_type, {1, 1024, 14, 14}}; migraphx::shape ws1{migraphx::shape::float_type, {2048, 512, 1, 1}}; migraphx::shape ws2{migraphx::shape::float_type, {2048, 1024, 1, 1}}; auto x1 = mm->add_parameter("x1", xs1); auto w1 = mm->add_parameter("w1", ws1); auto conv1 = mm->add_instruction( migraphx::make_op("convolution", {{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}), x1, w1); auto bn1 = add_bn(p, conv1, 2048); auto x2 = mm->add_parameter("x2", xs2); auto w2 = mm->add_parameter("w2", ws2); auto conv2 = mm->add_instruction( migraphx::make_op("convolution", {{"padding", {0, 0}}, {"stride", {2, 2}}, {"dilation", {1, 1}}}), x2, w2); auto bn2 = add_bn(p, conv2, 2048); auto add = mm->add_instruction(migraphx::make_op("add"), bn1, bn2); auto relu = mm->add_instruction(migraphx::make_op("relu"), add); mm->add_instruction(migraphx::make_op("pooling", {{"mode", migraphx::op::pooling_mode::average}, {"padding", {1, 1}}, {"stride", {2, 2}}, {"lengths", {3, 3}}}), relu); return p; } };