/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace tf { struct parse_pad : op_parser { bool transpose() const { return true; } std::vector operators() const { return {{"Pad"}}; } instruction_ref parse(const op_desc& /*opd*/, const tf_parser& parser, const tf_parser::node_info& info, std::vector args) const { size_t ndims = args.front()->get_shape().lens().size(); // in tf, the paddings are arranged as a 2d shape (ndims, 2), // the last dim contains the left padding and right padding respectively std::vector> pad_per_dim(ndims); auto tf_padding = args[1]->eval().get().to_vector(); for(size_t i = 0; i < 2 * ndims; i += 2) { pad_per_dim[i / 2].first = tf_padding[i]; pad_per_dim[i / 2].second = tf_padding[i + 1]; } parser.reorder_data(pad_per_dim); std::vector pads(ndims * 2); for(size_t i = 0; i < ndims; i++) { pads[i] = pad_per_dim[i].first; pads[i + ndims] = pad_per_dim[i].second; } return info.add_instruction(make_op("pad", {{"pads", pads}}), args.front()); } }; } // namespace tf } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx