/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { namespace device { template constexpr Iterator upper_bound(Iterator first, Iterator last, const T& value) { Iterator it; typename std::iterator_traits::difference_type count; typename std::iterator_traits::difference_type step; count = std::distance(first, last); while(count > 0) { it = first; step = count / 2; std::advance(it, step); if(!(value < *it)) { first = ++it; count -= step + 1; } else count = step; } return first; } void multinomial(hipStream_t stream, const argument& result, const argument& arg0, const argument& arg1) { size_t batch_size = arg0.get_shape().lens().front(); size_t class_size = arg0.get_shape().lens().back(); size_t sample_size = result.get_shape().lens().back(); hip_visit_all(arg0, arg1)([&](auto cdf, auto dist) { result.visit([&](auto out) { hip_visit_views(out)([&](auto output) { gs_launch(stream, batch_size * sample_size)([=](auto i) __device__ { auto idx = output.get_shape().multi(i); auto cdf_begin = cdf.begin() + (idx.front() * class_size); auto cdf_end = cdf_begin + class_size; auto sample_iter = upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end))); output[i] = std::distance(cdf_begin, sample_iter); }); }); }); }); } } // namespace device } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx