##################################################################################### # The MIT License (MIT) # # Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ##################################################################################### """ Implements ONNX's backend API. """ import sys if sys.version_info < (3, 0): sys.exit() import migraphx from onnx.backend.base import BackendRep import numpy as np from typing import Any, Tuple class MIGraphXBackendRep(BackendRep): """ Computes the prediction for a pipeline converted into an :class:`onnxruntime.InferenceSession` node. """ def __init__(self, prog, input_names): """ :param session: :class:`migraphx.program` """ self._program = prog self._input_names = input_names def run(self, inputs, **kwargs): # type: (Any, **Any) -> Tuple[Any, ...] """ Computes the prediction. See :meth:`migraphx.program.run`. """ if isinstance(inputs, list): inps = {} for i, name in enumerate(self._input_names): inps[name] = migraphx.argument(inputs[i]) mgx_outputs = self._program.run(inps) outs = [] for out in mgx_outputs: outs.append(np.array(out)) return outs else: inp = self._program.get_parameter_shapes().keys() if len(inp) != 1: raise RuntimeError("Model expect {0} inputs".format(len(inp))) inps = {inp[0]: migraphx.argument(inputs)} mgx_outputs = self._program.run(inps) outs = [] for out in mgx_outputs: outs.append(np.array(out)) return self._program.run(inps)