/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_onehot : op_parser { std::vector operators() const { return {{"OneHot"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& /*parser*/, onnx_parser::node_info info, std::vector args) const { migraphx::argument depth_arg = args[1]->eval(); check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported"); size_t depth = depth_arg.at(); int64_t axis = -1; if(contains(info.attributes, "axis")) { axis = info.attributes.at("axis").i(); } std::vector depth_input(depth * depth, 0.0f); for(int i = 0; i < depth; i++) { depth_input[depth * i + i] = 1.0f; } auto type = args[2]->get_shape().type(); shape s{type, {depth, depth}}; auto l_val = info.add_literal({s, depth_input}); auto gather_out = info.add_instruction(make_op("gather", {{"axis", 0}}), {l_val, args[0]}); // Finally, we need a transpose to move the inner most dim to the axis dim int n_rank = gather_out->get_shape().lens().size(); int64_t tuned_axis = tune_axis(n_rank, axis, opd.op_name); std::vector perm(n_rank - 1); std::iota(perm.begin(), perm.end(), 0); perm.insert(perm.begin() + tuned_axis, n_rank - 1); auto tr_out = info.add_instruction(make_op("transpose", {{"permutation", perm}}), gather_out); auto lens = tr_out->get_shape().lens(); auto off_val = info.add_instruction( make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[2]); auto on_val = info.add_instruction( make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), args[2]); auto diff = info.add_instruction(make_op("sub"), on_val, off_val); auto unsq_off_val = info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), off_val); auto unsq_diff_val = info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), diff); auto l_mul = info.add_instruction(make_op("mul"), tr_out, unsq_diff_val); return info.add_instruction(make_op("add"), l_mul, unsq_off_val); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx