##################################################################################### # The MIT License (MIT) # # Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ##################################################################################### import numpy import onnxruntime as rt sess = rt.InferenceSession("dm_nfnet_f0.onnx") input_name = sess.get_inputs()[0].name print("input name", input_name) input_shape = sess.get_inputs()[0].shape print("input shape", input_shape) input_type = sess.get_inputs()[0].type print("input type", input_type) output_name = sess.get_outputs()[0].name print("output name", output_name) output_shape = sess.get_outputs()[0].shape print("output shape", output_shape) output_type = sess.get_outputs()[0].type print("output type", output_type) x = numpy.random.random((1, 3, 192, 192)) x = x.astype(numpy.float32) import migraphx model = migraphx.parse_onnx("dm_nfnet_f0.onnx") model.compile(migraphx.get_target("gpu")) print(model.get_parameter_names()) print(model.get_parameter_shapes()) print(model.get_output_shapes()) result_migraphx = model.run({"inputs": x}) result_ort = sess.run([output_name], {input_name: x}) result_migraphx = result_migraphx[0].tolist() for i in range(10): x = numpy.random.random((1, 3, 192, 192)) x = x.astype(numpy.float32) result_migraphx = model.run({"inputs": x}) result_ort = sess.run([output_name], {input_name: x}) try: numpy.testing.assert_allclose(result_migraphx[0].tolist(), result_ort[0][0], rtol=1e-02) print(f"Test #{i} completed.") except AssertionError as e: print(e)