/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const std::vector& get_instance(std::size_t i, const std::function&)>& pred); namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { using namespace migraphx::gpu::gen; // NOLINT MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM); MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING); // NOLINTNEXTLINE static const char* const ck_gemm_kernel = R"__migraphx__( #include #include #include namespace migraphx { ${preamble} extern "C" { __global__ void ${kernel}(${params}) { transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) { ck_gemm>(xs...); }); } } } // namespace migraphx )__migraphx__"; static std::size_t int_div_ceil(std::size_t x, std::size_t y) { return (x + y - 1) / y; } static std::size_t block_size_index = 15; static std::size_t get_block_size(const std::vector& s) { return std::stoull(s[block_size_index]); } static std::size_t get_grid_size(const std::vector& s, std::size_t m, std::size_t n) { auto mpb = std::stoull(s[block_size_index + 1]); auto npb = std::stoull(s[block_size_index + 2]); return int_div_ceil(m, mpb) * int_div_ceil(n, npb); } template auto action_decorate(F f, Action action) { return [=](auto&&... xs) { action(); f(std::forward(xs)...); }; } using tuning_entry = std::pair, size_t>; static std::vector read_tuning(const std::string& s) { if(not fs::exists(s)) return {}; return from_value>(from_json_string(read_string(s))); } static std::size_t get_tuning_for(const std::vector& inputs) { static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, "")); if(tuning.empty()) std::cout << "*********** Warning: No CK tuning!" << std::endl; auto it = std::find_if( tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; }); if(it == tuning.end()) { std::cout << "*********** Warning: CK tuning missing for config!" << std::endl; return 4; } return it->second; } struct ck_gemm_compiler : compiler { static std::string get_layout(const shape& s) { return s.transposed() ? "ck::tensor_layout::gemm::ColumnMajor" : "ck::tensor_layout::gemm::RowMajor"; } static std::string get_type(const shape& s) { if(s.type() == shape::half_type) return "ck::half_t"; return shape::cpp_type(s.type()); } template static std::string ck_tuple(Iterator start, Iterator last, F f) { std::vector s; std::transform(start, last, std::back_inserter(s), f); return "ck::Tuple<" + join_strings(s, ",") + ">"; } std::vector names() const { return {"ck_gemm", "gpu::ck_gemm"}; } operation compile_op(context& /* ctx */, const std::vector& inputs, const value& v) const { auto a_shape = inputs[0]; auto b_shape = inputs[1]; auto c_shape = inputs.back(); auto m = c_shape.lens().front(); auto n = c_shape.lens().back(); auto i = v.get("tuning_val", get_tuning_for(inputs)); auto instance = get_instance(i, [&](const auto& x) -> bool { return get_layout(a_shape) == x[0] and get_layout(b_shape) == x[1] and get_layout(c_shape) == x[3] and get_type(a_shape) == x[4] and get_type(b_shape) == x[5] and get_type(c_shape) == x[9]; }); assert(inputs.size() < 4 or v.contains("post")); if (v.contains("post")) { assert(instance[2] == "ck::Tuple<>"); instance[2] = ck_tuple(inputs.begin()+2, inputs.end()-1, &get_layout); assert(instance[8] == "ck::Tuple<>"); instance[8] = ck_tuple(inputs.begin()+2, inputs.end()-1, &get_type); assert(instance[12] == "ck_passthrough"); instance[12] = v.at("post").to(); } hip_compile_options options; auto block_size = get_block_size(instance); auto grid_size = get_grid_size(instance, m, n); options.set_launch_params(v, grid_size * block_size, block_size); options.inputs = inputs; options.output = c_shape; options.kernel_name = v.get("kernel", "ck_gemm_kernel"); options.virtual_inputs = inputs; auto src = interpolate_string(ck_gemm_kernel, { {"instance", join_strings(instance, ",")}, {"params", enum_params(inputs.size(), "void * private_p")}, {"args", enum_params(inputs.size(), "private_p")}, {"preamble", v.get("preamble", std::string{})}, {"kernel", options.kernel_name} }); return compile_hip_code_object(src, options); } compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const { auto v = op.to_value(); v["kernel"] = "ck_gemm_kernel"; if(not ins->module_inputs().empty()) { auto* pm = ins->module_inputs().front(); v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") + "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);"; v["post"] = "ck_function_adaptor"; v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel"; } auto shapes = to_shapes(ins->inputs()); return action_decorate(replace(compile_op(ctx, shapes, v)), [=] { if(enabled(MIGRAPHX_LOG_CK_GEMM{})) std::cout << "ck_gemm: " << to_json_string(to_value(shapes)) << std::endl; }); } }; } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx