/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_multinomial : op_parser { std::vector operators() const { return {{"Multinomial"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, const onnx_parser::node_info& info, std::vector args) const { int dtype = 6; if(contains(info.attributes, "dtype")) dtype = info.attributes.at("dtype").i(); shape::type_t output_type = get_type(dtype); size_t batch_size = 1; if(contains(info.attributes, "batch_size")) batch_size = info.attributes.at("batch_size").i(); size_t sample_size = 1; if(contains(info.attributes, "sample_size")) sample_size = info.attributes.at("sample_size").i(); else MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given"); // Subtract the per-batch maximum log-probability, making the per-batch max 0 auto maxes = info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]); auto cdf = info.add_common_op("sub", args[0], maxes); // Take the element-wise exponent to get probabilities in the range (0, 1] cdf = info.add_instruction(migraphx::make_op("exp"), cdf); // Compute the cumulative density function cdf = info.add_instruction( migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); instruction_ref seed_input; if(contains(info.attributes, "seed")) { uint32_t seed = info.attributes.at("seed").i(); migraphx::shape s{migraphx::shape::uint32_type, {1}}; std::vector data = {seed}; seed_input = info.add_literal(migraphx::literal(s, data)); } else { seed_input = info.add_instruction(migraphx::make_op("random_seed")); } instruction_ref randoms; if(not args.empty()) { shape s0 = args[0]->get_shape(); if(s0.dynamic()) { // Dynamic batch_size will be taken from args[0]. Other contents of input are // ignored here. randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, args[0]); } else { // use literal. It may be quite large. batch_size = s0.lens().front(); auto rand_dummy = info.add_literal( migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}}); randoms = info.add_instruction( migraphx::make_op("random_uniform"), seed_input, rand_dummy); } } else { // use literal. It may be quite large. auto rand_dummy = info.add_literal( migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}}); randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy); } return info.add_instruction( migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx