/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_pooling : op_parser { std::vector operators() const { return {{"AveragePool", "average"}, {"GlobalAveragePool", "average"}, {"GlobalMaxPool", "max"}, {"MaxPool", "max"}, {"LpPool", "lpnorm"}, {"GlobalLpPool", "lpnorm"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& /*parser*/, onnx_parser::node_info info, std::vector args) const { const std::unordered_map mode_map = { {"max", op::pooling_mode::max}, {"average", op::pooling_mode::average}, {"lpnorm", op::pooling_mode::lpnorm}}; std::string mode = opd.op_name; if(not contains(mode_map, mode)) { MIGRAPHX_THROW("onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]"); } operation op = make_op("pooling", {{"mode", mode_map.at(mode)}}); value values = op.to_value(); auto l0 = args[0]; auto in_lens = l0->get_shape().lens(); assert(in_lens.size() > 2); auto kdims = in_lens.size() - 2; if(starts_with(opd.onnx_name, "Global")) { values["lengths"] = std::vector(in_lens.begin() + 2, in_lens.end()); } // does not support ceil_mode if(contains(info.attributes, "ceil_mode")) { values["ceil_mode"] = static_cast(info.attributes.at("ceil_mode").i()); } // count include padding, if count include pad is 1, we always use // explicit pad int count_include_pad = 0; if(contains(info.attributes, "count_include_pad")) { count_include_pad = info.attributes.at("count_include_pad").i(); } if(contains(info.attributes, "strides")) { values["stride"].clear(); copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"])); check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides"); } if(contains(info.attributes, "kernel_shape")) { values["lengths"].clear(); copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"])); check_attr_sizes( kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths"); } // lp_order attribute if(contains(info.attributes, "p")) { values["lp_order"] = info.attributes.at("p").i(); } // ensure pads availabe only when auto_pad is "NOT_SET" check_padding_mode(info, "POOLING"); std::vector paddings; float pad_val = ((mode == "max") ? std::numeric_limits::lowest() : 0.0f); if(contains(info.attributes, "pads")) { values["padding"].clear(); copy(info.attributes["pads"].ints(), std::back_inserter(paddings)); check_attr_sizes( kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings"); } if(contains(info.attributes, "auto_pad")) { values["padding"].clear(); // return paddings could be empty, then setting to 0 for no padding cal_auto_padding_size(info, values, values["lengths"].to_vector(), {1, 1}, in_lens, paddings); } if(paddings.size() != 2 * kdims) { paddings.resize(kdims * 2); std::fill_n(paddings.begin(), 2 * kdims, 0); } if(values["padding"].size() != kdims) { values["padding"].resize(kdims); std::fill_n(values["padding"].begin(), kdims, 0); } if(values["stride"].size() != kdims) { values["stride"].resize(kdims); std::fill_n(values["stride"].begin(), kdims, 1); } // used to calculate the supposed output shape std::vector orig_padding = paddings; std::vector slice_start; std::vector slice_end; tune_padding_size(values, paddings, count_include_pad, slice_start); if(not slice_start.empty()) { // calculate expected output shape orig_padding.insert(orig_padding.begin() + kdims, 2, 0); orig_padding.insert(orig_padding.begin(), 2, 0); op::pad pad{orig_padding, 0.0f}; shape padded_shape = pad.compute_shape({l0->get_shape()}); auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens(); // compute slice_end information slice_end.resize(slice_start.size()); std::transform(out_lens.begin() + 2, out_lens.end(), slice_start.begin(), slice_end.begin(), [](auto i, auto j) { return i + j; }); } values["padding"] = std::vector(paddings.begin(), paddings.end()); check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val); op.from_value(values); auto l1 = info.add_instruction(op, l0); if(not slice_start.empty()) { std::vector axes(kdims); std::iota(axes.begin(), axes.end(), 2); l1 = info.add_instruction( make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}), l1); } return l1; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx