/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void eliminate_concat::apply(module& m) const { for(auto ins : iterator_for(m)) { // Look for the concat operator if(ins->name() != concat_opt.name()) continue; // If any inputs are builtin or context free then abort // If any inputs are used more than once, then abort since there could // be errors due to aliasing if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto arg) { return arg->name().front() == '@' or (arg->get_operator().is_context_free() and not contains({"concat", "identity"}, arg->name())) or arg->outputs().size() > 1; })) continue; // We can only do this optimization when concat axis is either the leftmost // axis OR the sizes to the left of this axis are all equal to 1 // Since we've already checked that the non-axis dimensions are identical // we only need to check the first input auto lens = ins->inputs().front()->get_shape().lens(); auto concat_op = concat_opt.get_concat(ins->get_operator()); std::size_t axis_index = tune_axis(lens.size(), concat_op.axis, concat_op.name()); if(axis_index == 0 or std::all_of(lens.begin(), lens.begin() + axis_index, [](auto x) { return x == 1; })) { // Last input should be an allocation auto last = ins->inputs().back(); if(last->name() != concat_opt.allocate()) continue; // Where are the allocations for the tensors to be concatenated? std::vector allocations; std::transform( ins->inputs().begin(), std::prev(ins->inputs().end()), std::back_inserter(allocations), [&](instruction_ref x) { return instruction::get_output_alias(x, true); }); if(std::any_of(allocations.begin(), allocations.end(), [&](auto x) { return x->name() != concat_opt.allocate(); })) continue; // Need to sort the allocations, so that we know where to // insert the "super"-allocation auto sorted_allocations = allocations; std::sort(sorted_allocations.begin(), sorted_allocations.end(), [&](instruction_ref x, instruction_ref y) { return std::distance(m.begin(), x) < std::distance(m.begin(), y); }); // Move "super" allocation to the front auto first = sorted_allocations.front(); auto super = m.move_instruction(last, first); // Replace each allocation with a load std::size_t offset = 0; for(auto alloc : allocations) { op::load op{alloc->get_shape(), offset}; m.replace_instruction(alloc, op, {super}); offset += alloc->get_shape().bytes(); } std::vector args = {super}; std::copy(ins->inputs().begin(), ins->inputs().end() - 1, std::back_inserter(args)); m.replace_instruction(ins, migraphx::make_op("identity"), args); } } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx