/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct mlir_gpu_target : migraphx::gpu::target { std::string name() const { return "mlir"; } std::vector get_passes(migraphx::context& gctx, const migraphx::compile_options&) const { auto& ctx = migraphx::any_cast(gctx); return {migraphx::gpu::write_literals{&ctx}}; } }; std::string encode(const std::string& s) { std::stringstream ss; bool prespace = false; for(auto c : s) { if(std::isspace(c) != 0) { if(not prespace) ss << " "; prespace = true; } else if(std::isprint(c) != 0) { ss << c; prespace = false; } } return migraphx::trim(ss.str()); } migraphx::program create_program_from_mlir(const migraphx::module& mmlir) { migraphx::program p; auto* mm = p.get_main_module(); auto names = mmlir.get_parameter_names(); std::vector inputs; std::transform(names.begin(), names.end(), std::back_inserter(inputs), [&](const auto& name) { return mm->add_parameter(name, mmlir.get_parameter_shape(name)); }); std::sort(inputs.begin(), inputs.end(), migraphx::by(std::less<>{}, [](auto ins) { return to_string(ins->get_operator()); })); inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front())); migraphx::gpu::context ctx; migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir, inputs), inputs); return p; } migraphx::parameter_map generate_params(const migraphx::program& p) { migraphx::parameter_map m; std::size_t i = 0; for(auto&& x : p.get_parameter_shapes()) { // m[x.first] = migraphx::fill_argument(x.second, 1); m[x.first] = migraphx::generate_argument(x.second, i++); } return m; } migraphx::argument run_gpu(migraphx::program p, const migraphx::parameter_map& inputs) { mlir_gpu_target t; p.compile(t); migraphx::parameter_map m; for(auto&& input : inputs) { m[input.first] = t.copy_to(input.second); } for(auto&& x : p.get_parameter_shapes()) { if(m.count(x.first) == 0) { m[x.first] = t.allocate(x.second); } } return t.copy_from(p.eval(m).front()); } migraphx::argument run_ref(migraphx::program p, const migraphx::parameter_map& inputs) { p.compile(migraphx::make_target("ref")); return p.eval(inputs).front(); } bool verify_mlir(const migraphx::module& mmlir) { migraphx::program ref; ref.get_main_module()->insert_instructions(ref.get_main_module()->end(), &mmlir); auto inputs = generate_params(ref); auto mlir = create_program_from_mlir(mmlir); return migraphx::verify_args("mlir", run_ref(ref, inputs), run_gpu(mlir, inputs)); } TEST_CASE(conv) { const std::string mlir_output = R"__migraphx__( module { func.func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} { %0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> return %0 : tensor<1x2x2x2xf32> } } )__migraphx__"; migraphx::module m; auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}}); auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}}); auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w); m.add_return({conv}); auto s = migraphx::gpu::dump_mlir(m); // Skip test if MLIR is not enabled if(s.empty()) return; CHECK(encode(s) == encode(mlir_output)); EXPECT(verify_mlir(m)); } TEST_CASE(conv_add_relu) { const std::string mlir_output = R"__migraphx__( module { func.func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} { %0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> %1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32> %2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32> return %2 : tensor<1x2x2x2xf32> } } )__migraphx__"; migraphx::module m; auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}}); auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}}); auto b = m.add_parameter("b", {migraphx::shape::float_type, {1, 2, 2, 2}}); auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w); auto add = m.add_instruction(migraphx::make_op("add"), conv, b); auto relu = m.add_instruction(migraphx::make_op("relu"), add); m.add_return({relu}); auto s = migraphx::gpu::dump_mlir(m); // Skip test if MLIR is not enabled if(s.empty()) return; CHECK(encode(s) == encode(mlir_output)); EXPECT(verify_mlir(m)); } int main(int argc, const char* argv[]) { test::run(argc, argv); }