/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include TEST_CASE(multinomial_test) { migraphx::program p; auto* mm = p.get_main_module(); size_t sample_size = 100000; float seed = 0.0f; std::mt19937 gen(seed); std::uniform_real_distribution<> dis(0.0, 1.0); std::vector rand_samples(sample_size); std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); }); migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}}; auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples}); migraphx::shape s{migraphx::shape::float_type, {1, 5}}; std::vector dist{15, 25, 15, 25, 20}; std::vector data(5); std::transform(dist.begin(), dist.end(), data.begin(), [&](auto d) { return std::log(d); }); auto input = mm->add_literal(migraphx::literal(s, data)); auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input); auto mb_maxes = mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 5}}}), maxes); auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes); cdf = mm->add_instruction(migraphx::make_op("exp"), cdf); cdf = mm->add_instruction( migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); mm->add_instruction(migraphx::make_op("multinomial"), cdf, rs_lit); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); std::vector result_vec(sample_size); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); std::vector res_dist(5, 0); for(const auto& r : result_vec) res_dist[r]++; auto dist_sum = std::accumulate(dist.begin(), dist.end(), 0); auto res_dist_sum = std::accumulate(res_dist.begin(), res_dist.end(), 0); std::vector norm(5); std::vector res_norm(5); std::transform(dist.begin(), dist.end(), norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist.begin(), res_dist.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); }