#include #include #include #include #include #include #include #include #include #include #include #include #include #include // NOLINTNEXTLINE const std::string write_2s = R"__migraphx__( #include extern "C" { __global__ void write(int8_t* data) { int num = threadIdx.x + blockDim.x * blockIdx.x; data[num] = 2; } } int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string add_2s_binary = R"__migraphx__( #include extern "C" { __global__ void add_2(std::int8_t* x, std::int8_t* y) { int num = threadIdx.x + blockDim.x * blockIdx.x; y[num] = x[num] + 2; } } int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string simple_pointwise_increment = R"__migraphx__( #include #include using namespace migraphx; extern "C" { __global__ void kernel(void* x, void* y) { make_tensors()(x, y)([](auto xt, auto yt) __device__ { auto idx = make_index(); const auto stride = idx.nglobal(); for(index_int i = idx.global; i < xt.get_shape().elements(); i += stride) { yt[i] = xt[i] + 1; } }); } } int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string check_define = R"__migraphx__( #ifndef __DEFINE__ #error __DEFINE__ was not defined #endif int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string unused_param = R"__migraphx__( extern "C" { __global__ void kernel(void* x, void* y) {} } int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string incorrect_program = R"__migraphx__( extern "C" { __global__ void kernel(void* x) { x += y; } } int main() {} )__migraphx__"; // NOLINTNEXTLINE const std::string math_template = R"__migraphx__( #include #include extern "C" { __global__ void kernel(${type}* p) { auto x = *p; *p = migraphx::implicit_conversion(migraphx::${invoke}); } } int main() {} )__migraphx__"; migraphx::src_file make_src_file(const std::string& name, const std::string& content) { return {name, std::make_pair(content.data(), content.data() + content.size())}; } TEST_CASE(simple_compile_hip) { auto binaries = migraphx::gpu::compile_hip_src( {make_src_file("main.cpp", write_2s)}, "", migraphx::gpu::get_device_name()); EXPECT(binaries.size() == 1); migraphx::argument input{{migraphx::shape::int8_type, {5}}}; auto ginput = migraphx::gpu::to_gpu(input); migraphx::gpu::kernel k{binaries.front(), "write"}; k.launch(nullptr, input.get_shape().elements(), 1024)(ginput.cast()); auto output = migraphx::gpu::from_gpu(ginput); EXPECT(output != input); auto data = output.get(); EXPECT(migraphx::all_of(data, [](auto x) { return x == 2; })); } auto check_target(const std::string& arch) { auto define = "__" + arch + "__"; auto content = migraphx::replace_string(check_define, "__DEFINE__", define); return migraphx::gpu::compile_hip_src({make_src_file("main.cpp", content)}, "", arch); } TEST_CASE(compile_target) { EXPECT(not check_target("gfx900").empty()); EXPECT(not check_target("gfx906").empty()); } TEST_CASE(compile_errors) { EXPECT(test::throws([&] { migraphx::gpu::compile_hip_src( {make_src_file("main.cpp", incorrect_program)}, "", migraphx::gpu::get_device_name()); })); } TEST_CASE(compile_warnings) { auto compile = [](const std::string& params) { return migraphx::gpu::compile_hip_src( {make_src_file("main.cpp", unused_param)}, params, migraphx::gpu::get_device_name()); }; EXPECT(not compile("").empty()); EXPECT(not compile("-Wunused-parameter -Wno-error").empty()); EXPECT(not compile("-Wno-unused-parameter -Werror").empty()); EXPECT(test::throws([&] { compile("-Werror=unused-parameter"); })); EXPECT(test::throws([&] { compile("-Wunused-parameter -Werror"); })); } TEST_CASE(code_object_hip) { auto binaries = migraphx::gpu::compile_hip_src( {make_src_file("main.cpp", add_2s_binary)}, "", migraphx::gpu::get_device_name()); EXPECT(binaries.size() == 1); migraphx::shape input{migraphx::shape::int8_type, {5}}; std::vector expected_inputs = {input, input}; auto co = migraphx::make_op("gpu::code_object", {{"code_object", migraphx::value::binary{binaries.front()}}, {"symbol_name", "add_2"}, {"global", input.elements()}, {"local", 1024}, {"expected_inputs", migraphx::to_value(expected_inputs)}, {"output", migraphx::to_value(input)}}); migraphx::program p; auto* mm = p.get_main_module(); auto input_literal = migraphx::generate_literal(input); auto output_literal = migraphx::transform(input_literal, [](auto x) { return x + 2; }); auto x = mm->add_literal(input_literal); auto y = mm->add_parameter("output", input); mm->add_instruction(co, x, y); migraphx::compile_options options; p.compile(migraphx::gpu::target{}, options); auto result = migraphx::gpu::from_gpu(p.eval({{"output", migraphx::gpu::allocate_gpu(input)}}).front()); EXPECT(result == output_literal.get_argument()); } TEST_CASE(compile_code_object_hip) { migraphx::shape input{migraphx::shape::float_type, {5, 2}}; migraphx::gpu::hip_compile_options options; options.global = 256 * 1024; options.local = 1024; options.inputs = {input, input}; options.output = input; auto co = migraphx::gpu::compile_hip_code_object(simple_pointwise_increment, options); migraphx::program p; auto* mm = p.get_main_module(); auto input_literal = migraphx::generate_literal(input); auto output_literal = migraphx::transform(input_literal, [](auto x) { return x + 1; }); auto x = mm->add_literal(input_literal); auto y = mm->add_parameter("output", input); mm->add_instruction(co, x, y); p.compile(migraphx::gpu::target{}, migraphx::compile_options{}); auto result = migraphx::gpu::from_gpu(p.eval({{"output", migraphx::gpu::allocate_gpu(input)}}).front()); EXPECT(result == output_literal.get_argument()); } TEST_CASE(compile_pointwise) { migraphx::shape input{migraphx::shape::float_type, {5, 2}}; migraphx::gpu::context ctx; auto co = migraphx::gpu::compile_op( "pointwise", ctx, {input, input}, {{"lambda", "[](auto x) { return x + 1; }"}}); migraphx::program p; auto* mm = p.get_main_module(); auto input_literal = migraphx::generate_literal(input); auto output_literal = migraphx::transform(input_literal, [](auto x) { return x + 1; }); auto x = mm->add_literal(input_literal); auto y = mm->add_parameter("output", input); mm->add_instruction(co, x, y); p.compile(migraphx::gpu::target{}, migraphx::compile_options{}); auto result = migraphx::gpu::from_gpu(p.eval({{"output", migraphx::gpu::allocate_gpu(input)}}).front()); EXPECT(result == output_literal.get_argument()); } TEST_CASE(compile_math) { std::vector math_invoke = { // clang-format off "abs(x)", "acos(x)", "acosh(x)", "asin(x)", "asinh(x)", "atan(x)", "atanh(x)", "ceil(x)", "cos(x)", "cosh(x)", "erf(x)", "exp(x)", "floor(x)", "isnan(x)", "log(x)", "max(x, x)", "min(x, x)", "pow(x, 0)", "pow(x, x)", "round(x)", "rsqrt(x)", "sin(x)", "sinh(x)", "sqrt(x)", "tan(x)", "tanh(x)", "where(true, x, x)", // clang-format on }; std::vector data_types; auto vec_sizes = {2, 4, 6}; for(auto&& t : migraphx::shape::types()) { if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t)) continue; auto name = migraphx::shape::cpp_type(t); if(t == migraphx::shape::half_type) name.insert(0, "migraphx::"); data_types.push_back(name); migraphx::transform(vec_sizes, std::back_inserter(data_types), [&](auto i) { return "migraphx::vec<" + name + ", " + std::to_string(i) + ">"; }); } migraphx::shape input{migraphx::shape::float_type, {5, 2}}; migraphx::gpu::hip_compile_options options; options.global = 1024; options.local = 1024; options.inputs = {input}; options.output = input; migraphx::par_for(math_invoke.size() * data_types.size(), 1, [&](auto i) { const auto& t = data_types[i % data_types.size()]; const auto& invoke = math_invoke[i / data_types.size()]; auto src = migraphx::interpolate_string(math_template, {{"type", t}, {"invoke", invoke}}); auto co = migraphx::gpu::compile_hip_code_object(src, options); (void)co; }); } int main(int argc, const char* argv[]) { test::run(argc, argv); }