#include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace tf { struct parse_split : op_parser { std::vector operators() const { return {{"Split"}, {"SplitV"}}; } std::vector parse(const op_desc& /*opd*/, const tf_parser& /*parser*/, tf_parser::node_info info, std::vector args) const { bool vector_as_input = args.size() == 3; int num_outputs = 1; auto axis_arg = args[0]; auto input_arg = args[1]; if(vector_as_input) { input_arg = args[0]; axis_arg = args[2]; } if(contains(info.attributes, "num_split")) num_outputs = info.attributes.at("num_split").i(); std::vector splits(num_outputs); std::vector slice_pos{0}; if(vector_as_input) { splits = args[1]->eval().get().to_vector(); num_outputs = splits.size(); } assert(num_outputs > 0); if(num_outputs == 1) return std::vector{ info.add_instruction(make_op("identity"), input_arg)}; auto lens = input_arg->get_shape().lens(); auto num_dims = lens.size(); int axis = axis_arg->eval().at(); // ensure split is made evenly if "num_split" is used assert(vector_as_input or lens[axis] % num_outputs == 0); auto split_size = lens[axis] / num_outputs; // push back first end point of slice if(vector_as_input) { slice_pos.push_back(splits[0]); } else { slice_pos.push_back(split_size); } // calculate remaining end points for each slice for(auto i = 1; i < num_outputs; i++) { if(vector_as_input) { splits[i] += splits[i - 1]; slice_pos.push_back(splits[i]); } else { slice_pos.push_back((i + 1) * split_size); } } std::vector result; for(auto i = 0; i < num_outputs; i++) { std::vector axes(num_dims); std::iota(axes.begin(), axes.end(), 0); std::vector starts(num_dims, 0); std::vector ends(lens.begin(), lens.end()); starts[axis] = slice_pos[i]; ends[axis] = slice_pos[i + 1]; auto op = make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}); result.push_back(info.add_instruction(op, input_arg)); } return result; } }; } // namespace tf } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx