#include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_slice : op_parser { std::vector operators() const { return {{"Slice"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { op::slice op; std::vector steps; // slice can have up to 5 inputs, we first check the 5th one // to decide whether MIGRAPHX can handle this slice if(args.size() == 5) { migraphx::argument step_arg = args.back()->eval(); check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice"); step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); }); } if(args.size() >= 4) { migraphx::argument axes_arg = args.at(3)->eval(); check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice"); axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); }); } else if(contains(info.attributes, "axes")) { literal s = parser.parse_value(info.attributes.at("axes")); s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); }); } if(args.size() >= 3) { migraphx::argument end_arg = args.at(2)->eval(); check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice"); end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); }); } else if(contains(info.attributes, "ends")) { literal s = parser.parse_value(info.attributes.at("ends")); s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); }); } if(args.size() >= 2) { migraphx::argument start_arg = args.at(1)->eval(); check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice"); start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); }); } else if(contains(info.attributes, "starts")) { literal s = parser.parse_value(info.attributes.at("starts")); s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); }); } if(op.axes.empty()) { std::vector axes(args[0]->get_shape().lens().size()); std::iota(axes.begin(), axes.end(), int64_t{0}); op.axes = axes; } std::vector raxes; assert(steps.empty() or steps.size() == op.axes.size()); assert(op.axes.size() == op.starts.size()); assert(op.axes.size() == op.ends.size()); for(auto i : range(steps.size())) { if(steps[i] >= 0) continue; op.starts[i] += 1; if(op.starts[i] == 0) op.starts[i] = INT_MAX; op.ends[i] += 1; raxes.push_back(op.axes[i]); std::swap(op.starts[i], op.ends[i]); } auto ins = info.add_instruction(op, args[0]); if(not raxes.empty()) ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins); if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; })) { std::vector nsteps; std::transform(steps.begin(), steps.end(), std::back_inserter(nsteps), [](auto s) { return std::abs(s); }); return ins = info.add_instruction( make_op("step", {{"axes", op.axes}, {"steps", nsteps}}), ins); } else return ins; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx