/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_batchnorm : op_parser { std::vector operators() const { return {{"BatchNormalization"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { float epsilon = 1e-5f; if(contains(info.attributes, "epsilon")) { epsilon = parser.parse_value(info.attributes.at("epsilon")).at(); } auto x_lens = args[0]->get_shape().lens(); auto x_type = args[0]->get_shape().type(); if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) { return a->get_shape().lens().size() != 1; })) { MIGRAPHX_THROW("PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1"); } if(x_lens.size() == 1) { auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}}); auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}}); auto n0 = info.add_broadcastable_binary_op("sub", args[0], args[3]); auto d0 = info.add_broadcastable_binary_op("add", args[4], eps); auto d1 = info.add_broadcastable_binary_op("pow", d0, rt); auto div0 = info.add_broadcastable_binary_op("div", n0, d1); auto r0 = info.add_broadcastable_binary_op("mul", div0, args[1]); return info.add_broadcastable_binary_op("add", r0, args[2]); } else if(x_lens.size() > 2) { // unsqueeze tensors of shape (C) to broadcast correctly std::vector unsqueeze_axes(x_lens.size() - 2); std::iota(unsqueeze_axes.begin(), unsqueeze_axes.end(), 1); auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}}); auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}}); auto scale_unsqueeze = info.add_instruction( migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[1]); auto bias_unsqueeze = info.add_instruction( migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[2]); auto mean_unsqueeze = info.add_instruction( migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[3]); auto var_unsqueeze = info.add_instruction( migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[4]); auto numer = info.add_broadcastable_binary_op("sub", args[0], mean_unsqueeze); auto var_eps = info.add_broadcastable_binary_op("add", var_unsqueeze, eps); auto denom = info.add_broadcastable_binary_op("pow", var_eps, rt); auto div0 = info.add_broadcastable_binary_op("div", numer, denom); auto r0 = info.add_broadcastable_binary_op("mul", div0, scale_unsqueeze); return info.add_broadcastable_binary_op("add", r0, bias_unsqueeze); } else { // num dims either 0 or 2 MIGRAPHX_THROW("PARSE_BATCHNORM: rank " + std::to_string(x_lens.size()) + " input tensor, unhandled data format"); } } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx