/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { /* ********************************************************************************* * Reference: see QLinearSigmoid, QLinearLeakyRelu in * * https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * ********************************************************************************* com.microsoft.QLinearSigmoid QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x)) Version This version of the operator has been available since version 1 of the 'com.microsoft' operator set. ***************************************************************************************************** com.microsoft.QLinearLeakyRelu QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for output, and produces one output data (Tensor) where the function f(x) = quantize(alpha * dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is applied to the data tensor elementwise. Version This version of the operator has been available since version 1 of the 'com.microsoft' operator set. Attributes alpha : float Coefficient of leakage. ****************************************************************************************************** Generic input layout of QLinear unary operators: Inputs (4 - 5) X : T Input tensor X_scale : tensor(float) Input X's scale. It's a scalar, which means a per-tensor/layer quantization. X_zero_point (optional) : T Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization. Y_scale : tensor(float) Output Y's scale. It's a scalar, which means a per-tensor/layer quantization. Y_zero_point (optional) : T Output Y's zero point. Default value is 0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization. Outputs Y : T Output tensor Type Constraints T : tensor(uint8), tensor(int8) Constrain input and output types to 8 bit tensors. */ struct parse_qlinearunary : op_parser { std::vector operators() const { return {{"QLinearSigmoid", "sigmoid"}, {"QLinearLeakyRelu", "leaky_relu"}}; } void check_inputs(const op_desc& opd, const std::vector& args) const { if(args.size() < 4) MIGRAPHX_THROW(opd.op_name + ": missing inputs"); const auto& in_x = args[0]; auto sh_x = in_x->get_shape(); auto type_x = sh_x.type(); if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type) MIGRAPHX_THROW(opd.op_name + ": unsupported input type"); } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, const onnx_parser::node_info& info, const std::vector& args) const { check_inputs(opd, args); // X const auto& in_x = args[0]; const auto& in_scale_x = args[1]; const auto& in_zero_pt_x = args[2]; auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info); // Y = (op(dequantizelinear(x)) auto op = parser.load(opd.op_name, info); auto y = info.add_instruction(op, dquant_x); const auto& in_scale_y = args[3]; // zero_pt for Y is supplied as the last optional argument.. if(args.size() == 5) return (bcast_qdq_instr("quantizelinear", y, in_scale_y, args[4], info)); // if no zero_pt: just broadcast the scale.. auto bcast_scale_sigm = bcast_scalar_instr(y->get_shape(), in_scale_y, info); return (info.add_instruction(migraphx::make_op("quantizelinear"), y, bcast_scale_sigm)); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx