#include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace cpu { struct cpu_gather : auto_register_op { op::gather op; template static auto reflect(Self& self, F f) { return migraphx::reflect(self.op, f); } std::string name() const { return "cpu::" + op.name(); } shape compute_shape(std::vector inputs) const { // Compensate for allocation inputs.pop_back(); check_shapes(inputs, *this).standard(); return migraphx::compute_shape(op, inputs); } argument compute(context& ctx, const shape& output_shape, const std::vector& args) const { std::size_t nelements = output_shape.elements(); auto lens = args[0].get_shape().lens(); auto axis_dim_size = lens[op.axis]; lens[op.axis] = args[1].get_shape().elements(); shape out_comp{output_shape.type(), lens}; visit_all(args.back(), args[0])([&](auto output, auto input) { args[1].visit([&](auto indices) { const auto* indices_ptr = indices.data(); auto* output_ptr = output.data(); ctx.bulk_execute(nelements, 1024, [=](auto start, auto end) { for(auto i = start; i < end; i++) { auto idx = out_comp.multi(i); auto in_index = indices_ptr[idx[op.axis]]; in_index = (in_index < 0) ? in_index + axis_dim_size : in_index; idx[op.axis] = in_index; output_ptr[i] = input(idx.begin(), idx.end()); } }); }); }); return args.back(); } std::ptrdiff_t output_alias(const std::vector& shapes) const { return shapes.size() - 1; } }; } // namespace cpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx