#include #include #include #include #include #include #include #include #include void run_pass(migraphx::module& m) { migraphx::run_passes( m, {migraphx::normalize_ops{}, migraphx::eliminate_pad{}, migraphx::dead_code_elimination{}}); } migraphx::instruction_ref create_im2col(migraphx::instruction_ref& l_img, size_t channels, migraphx::module& m) { size_t f[2] = {1, 1}; std::vector weights(channels * f[0] * f[1]); migraphx::shape s_weights{migraphx::shape::int32_type, {1, channels, f[0], f[1]}}; auto l_weights = m.add_literal(migraphx::literal{s_weights, weights}); return m.add_instruction(migraphx::make_op("im2col"), l_img, l_weights); } migraphx::instruction_ref create_conv(migraphx::instruction_ref& l_img, size_t channels, migraphx::module& m, migraphx::op::padding_mode_t padding_mode = migraphx::op::padding_mode_t::default_) { migraphx::shape s_weights{migraphx::shape::int32_type, {4, channels, 3, 3}}; std::vector weights(4 * channels * 3 * 3); auto l_weights = m.add_literal(migraphx::literal{s_weights, weights}); migraphx::op::convolution op; op.padding_mode = padding_mode; return m.add_instruction(op, l_img, l_weights); } TEST_CASE(rewrite_pad) { migraphx::module m; size_t img_dim[2] = {2, 2}; size_t channels = 1; std::vector input(channels * img_dim[0] * img_dim[1]); std::iota(input.begin(), input.end(), 0); migraphx::shape s_img{migraphx::shape::int32_type, {1, channels, img_dim[0], img_dim[1]}}; auto l_img = m.add_literal(migraphx::literal{s_img, input}); auto padded_img = m.add_instruction(migraphx::make_op("pad", {{"pads", {0, 0, 1, 1, 0, 0, 1, 1}}}), l_img); auto l0 = create_im2col(padded_img, channels, m); auto l1 = create_conv(padded_img, channels, m); auto l2 = m.add_instruction( migraphx::make_op("pooling", {{"mode", migraphx::op::pooling_mode::max}}), padded_img); m.add_instruction(migraphx::make_op("identity"), l0, l1, l2); auto s0 = l0->get_shape(); auto s1 = l1->get_shape(); auto s2 = l2->get_shape(); run_pass(m); EXPECT(l0->get_shape() == s0); EXPECT(l1->get_shape() == s1); EXPECT(l2->get_shape() == s2); auto op0 = l0->get_operator().to_value(); auto om1 = l1->get_operator().to_value(); auto om2 = l2->get_operator().to_value(); EXPECT(op0["padding"].to_vector() == std::vector{1, 1, 1, 1}); EXPECT(om1["padding"].to_vector() == std::vector{1, 1, 1, 1}); EXPECT(om2["padding"].to_vector() == std::vector{1, 1, 1, 1}); EXPECT(std::none_of( m.begin(), m.end(), [](const migraphx::instruction& ins) { return ins.name() == "pad"; })); } TEST_CASE(rewrite_pad_im2col_asymmetric) { migraphx::module m; size_t img_dim[2] = {2, 2}; size_t channels = 1; std::vector input(channels * img_dim[0] * img_dim[1]); std::iota(input.begin(), input.end(), 0); migraphx::shape s_img{migraphx::shape::int32_type, {1, channels, img_dim[0], img_dim[1]}}; auto l_img = m.add_literal(migraphx::literal{s_img, input}); auto padded_img = m.add_instruction(migraphx::make_op("pad", {{"pads", {0, 0, 0, 0, 0, 0, 2, 2}}}), l_img); auto l0 = create_im2col(padded_img, channels, m); auto s0 = l0->get_shape(); run_pass(m); EXPECT(l0->get_shape() == s0); auto op0 = l0->get_operator().to_value(); EXPECT(op0["padding"].to_vector() == std::vector{0, 0, 2, 2}); run_pass(m); EXPECT(std::none_of( m.begin(), m.end(), [](const migraphx::instruction& ins) { return ins.name() == "pad"; })); } int main(int argc, const char* argv[]) { test::run(argc, argv); }