/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { /* ********************************************************************************* * Reference: see QLinearAveragePool and QLinearGlobalAveragePool in * * github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * ********************************************************************************* */ struct parse_qlinearpooling : op_parser { std::vector operators() const { return {{"QLinearGlobalAveragePool", "average"}, {"QLinearAveragePool", "average"}}; } void check_inputs(const op_desc& opd, const std::vector& args) const { const auto& in_x = args[0]; const auto onnx_name = opd.onnx_name; if(in_x->get_shape().ndim() <= 2) MIGRAPHX_THROW(onnx_name + ": input dimensions too small"); auto type_x = in_x->get_shape().type(); if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type) MIGRAPHX_THROW(onnx_name + ": unsupported input type"); const auto& zero_pt_x = args[2]; if(type_x != zero_pt_x->get_shape().type()) MIGRAPHX_THROW(onnx_name + ": mismatched type: input zero point"); if(args.size() == 5) { const auto& zero_pt_y = args[4]; if(type_x != zero_pt_y->get_shape().type()) MIGRAPHX_THROW(onnx_name + ": mismatched type: output zero point"); } } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, const onnx_parser::node_info& info, const std::vector& args) const { if(contains(info.attributes, "channel_last")) { int channels_last = parser.parse_value(info.attributes.at("channels_last")).template at(); if(channels_last != 0) MIGRAPHX_THROW(opd.onnx_name + ": channels_last (N x D1..Dn x C) is not supported"); } check_inputs(opd, args); // Input: X const auto& in_x = args[0]; const auto& scale_x = args[1]; const auto& zero_pt_x = args[2]; auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info); // Output Y = pooling_op(X) auto out_y = add_pooling_op(opd, info, dquant_x); const auto& in_scale_y = args[3]; // zero_pt for Y is supplied as the last optional argument.. if(args.size() == 5) return (bcast_qdq_instr("quantizelinear", out_y, in_scale_y, args[4], info)); // if no zero_pt: just broadcast the scale.. auto bcast_scale_y = bcast_scalar_instr(out_y->get_shape(), in_scale_y, info); return (info.add_instruction(migraphx::make_op("quantizelinear"), out_y, bcast_scale_y)); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx