#include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { auto compute_type(shape::type_t t1, shape::type_t t2) { const static std::unordered_map op_order = {{shape::int8_type, 1}, {shape::uint8_type, 2}, {shape::int16_type, 3}, {shape::uint16_type, 4}, {shape::int32_type, 5}, {shape::uint32_type, 6}, {shape::int64_type, 7}, {shape::uint64_type, 8}, {shape::half_type, 9}, {shape::float_type, 10}, {shape::double_type, 11}}; int it1 = t1; int it2 = t2; if(!contains(op_order, it1) or !contains(op_order, it2)) { MIGRAPHX_THROW("PARSE_POW: Input data type not supported!"); } return ((op_order.at(it1) >= op_order.at(it2)) ? t1 : t2); } struct parse_pow : op_parser { std::vector operators() const { return {{"Pow"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, const onnx_parser::node_info& info, std::vector args) const { auto type_base = args[0]->get_shape().type(); auto type_exponent = args[1]->get_shape().type(); auto type_compute = compute_type(type_base, type_exponent); if(type_compute != type_base) { args[0] = info.add_instruction(make_op("convert", {{"target_type", type_compute}}), args[0]); } if(type_compute != type_exponent) { args[1] = info.add_instruction(make_op("convert", {{"target_type", type_compute}}), args[1]); } auto ret = info.add_broadcastable_binary_op("pow", args[0], args[1]); if(type_compute != type_base) { ret = info.add_instruction(make_op("convert", {{"target_type", type_base}}), ret); } return ret; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx