/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef MIGRAPHX_GUARD_OPERATORS_POOLING_HPP #define MIGRAPHX_GUARD_OPERATORS_POOLING_HPP #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace op { struct pooling { pooling_mode mode = {pooling_mode::average}; std::vector padding = {0, 0}; std::vector stride = {1, 1}; std::vector lengths = {1, 1}; bool ceil_mode = false; int lp_order = 2; // Global pooling with dynamic shape input bool dyn_global = false; template static auto reflect(Self& self, F f) { return pack(f(self.mode, "mode"), f(self.padding, "padding"), f(self.stride, "stride"), f(self.lengths, "lengths"), f(self.ceil_mode, "ceil_mode"), f(self.lp_order, "lp_order"), f(self.dyn_global, "dyn_global")); } std::string name() const { return "pooling"; } void check_attribute_size() const { if((padding.size() != stride.size() and (padding.size() / 2) != stride.size()) or (not dyn_global and stride.size() != lengths.size())) { MIGRAPHX_THROW("POOLING: inconsistent attribute sizes"); } } size_t kdims() const { check_attribute_size(); return stride.size(); } value attributes() const { return {{"normalize_padding", "padding"}}; } std::vector calc_spatial_dim_out(const std::vector& input_lens, std::size_t kdims) const { std::vector output_lens{}; for(size_t i = 0; i < kdims; ++i) { if(input_lens[i + 2] == 0) { // handle opt = 0 output_lens.push_back(0); } else { std::size_t padding_factor = 2 * padding[i]; if(padding.size() == 2 * kdims) padding_factor = padding[i] + padding[i + kdims]; assert(input_lens[i + 2] + padding_factor >= lengths[i]); std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i]; std::size_t len = (ceil_mode) ? dim_size / stride[i] + static_cast((dim_size % stride[i] != 0)) // ceil uint divide : dim_size / stride[i]; // floor divide output_lens.push_back(len + 1); } } return output_lens; } shape normalize_compute_shape(std::vector inputs) const { check_shapes{inputs, *this, true}.has(1); check_attribute_size(); const shape& input = inputs.at(0); auto padding_size = padding.size(); size_t kdims = input.ndim() - 2; if(input.ndim() != padding_size / 2 + 2 and input.ndim() != padding_size + 2) { MIGRAPHX_THROW("POOLING: input and attribute size mismatch!"); } if(input.dynamic()) { auto input_dyn_dims = input.dyn_dims(); std::vector output_dyn_dims(input_dyn_dims.begin(), input_dyn_dims.begin() + 2); if(dyn_global) { for(size_t i = 0; i < kdims; ++i) { output_dyn_dims.push_back(shape::dynamic_dimension{1, 1, 1}); } return {input.type(), output_dyn_dims}; } else { auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims); auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims); auto opt_spatial_dims = calc_spatial_dim_out(input.opt_lens(), kdims); for(size_t i = 0; i < kdims; ++i) { output_dyn_dims.push_back(shape::dynamic_dimension{ min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]}); } return {input.type(), output_dyn_dims}; } } else { auto input_lens = input.lens(); std::vector output_lens(input_lens.begin(), input_lens.begin() + 2); // Used for when normalize_compute_shape() is called again at model eval time // for an originally dynamic shape. Since kernel shape is not used with dyn_global. if(dyn_global) { for(size_t i = 0; i < kdims; ++i) { output_lens.push_back(1); } return {input.type(), output_lens}; } else { auto output_spatial_lens = calc_spatial_dim_out(input_lens, kdims); output_lens.insert( output_lens.end(), output_spatial_lens.begin(), output_spatial_lens.end()); return inputs[0].with_lens(output_lens); } } } struct lpnorm_pool { int p = 0; lpnorm_pool() = delete; explicit lpnorm_pool(int x) : p{x} {}; template double init() const { return 0.0; } double operator()(double x, double y) const { return x + std::pow(std::abs(y), p); } double final(double x, std::size_t) const { return std::pow(x, 1. / p); } }; struct avg_pool { template double init() const { return 0.0; } double operator()(double x, double y) const { return x + y; } double final(double x, std::size_t y) const { return (y == 0) ? 0.0 : (x / y); } }; struct max_pool { template T init() const { return std::numeric_limits::lowest(); } double operator()(double x, double y) const { return std::max(x, y); } double final(double x, std::size_t) const { return (x); } }; template void calc_pooling(const shape& output_shape, Out& output, const In& input, const std::vector& kernel_dims, Op op) const { auto in_s = input.get_shape(); auto in_lens = in_s.lens(); par_for(output_shape.elements(), [&](auto i) { auto idx_o = output_shape.multi(i); auto n_dim = idx_o.size(); std::vector win_start; std::vector win_size; for(std::size_t dim = 2; dim < n_dim; ++dim) { auto d_2 = dim - 2; int start = static_cast(idx_o[dim] * stride[d_2]) - static_cast(padding[d_2]); int end = std::min(start + kernel_dims[d_2], in_lens[dim]); start = std::max(start, 0); win_start.push_back(start); win_size.push_back(end - start); } shape win_shape{output_shape.type(), win_size}; auto pool_size = win_shape.elements(); double output_val = op.template init(); shape_for_each(win_shape, [&](auto idx_w) { auto idx = idx_o; std::transform(idx_w.begin(), idx_w.end(), win_start.begin(), idx.begin() + 2, [](auto ii, auto jj) { return ii + jj; }); if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and idx < in_lens) { output_val = op(output_val, input[in_s.index(idx)]); } }); output[i] = Type(op.final(output_val, pool_size)); }); } argument compute(const dyn_output& dyn_out, std::vector args) const { argument result{dyn_out.computed_shape}; auto input_lens = args[0].get_shape().lens(); std::vector kernel_dims; if(dyn_global) { kernel_dims.insert(kernel_dims.end(), input_lens.begin() + 2, input_lens.end()); } else { kernel_dims = this->lengths; } visit_all(result, args[0])([&](auto output, auto input) { using type = typename decltype(output)::value_type; switch(mode) { case migraphx::op::pooling_mode::average: calc_pooling(dyn_out.computed_shape, output, input, kernel_dims, avg_pool{}); break; case migraphx::op::pooling_mode::max: calc_pooling(dyn_out.computed_shape, output, input, kernel_dims, max_pool{}); break; case migraphx::op::pooling_mode::lpnorm: calc_pooling( dyn_out.computed_shape, output, input, kernel_dims, lpnorm_pool{lp_order}); break; } }); return result; } }; } // namespace op } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx #endif