/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void calculate_padding(int64_t idx, std::vector& pads, int64_t input_dim, int64_t stride, int64_t dilation, int64_t weight_dim, bool is_same_upper) { int64_t output_dim = (input_dim + stride - 1) / stride; // round up result int64_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1); int64_t pad = std::max(static_cast(0), (output_dim - 1) * stride + new_weight_dim - input_dim); auto pad_ndims = pads.size() / 2; if(is_same_upper) { pads[idx] = pad / 2; pads[idx + pad_ndims] = pad - pad / 2; } else { pads[idx + pad_ndims] = pad / 2; pads[idx] = pad - pad / 2; } } std::vector calc_dyn_auto_pad(std::vector tensor_lens, std::vector k_lens, std::vector strides, std::vector dilations, bool use_upper) { std::vector padding; padding.resize(2 * k_lens.size()); for(std::size_t i = 0; i < padding.size() / 2; i++) { std::ptrdiff_t input_dim = tensor_lens[i]; std::ptrdiff_t stride = strides[i]; std::ptrdiff_t weight_dim = k_lens[i]; std::ptrdiff_t dilation = dilations[i]; std::ptrdiff_t output_dim = (input_dim + stride - 1) / stride; // round up result std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1); std::size_t pad = std::max(static_cast(0), (output_dim - 1) * stride + new_weight_dim - input_dim); auto pad_ndims = padding.size() / 2; if(use_upper) { padding[i] = pad / 2; padding[i + pad_ndims] = pad - pad / 2; } else { padding[i + pad_ndims] = pad / 2; padding[i] = pad - pad / 2; } } return padding; } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx