/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION) struct fusion { using op_t = miopenFusionOpDescriptor_t; shared fp; // Used as a temporary hack to keep descriptor references alive std::vector> storage; template auto keep_alive(T x) { auto result = share(std::move(x)); storage.push_back(result); return result; } fusion() = default; fusion(const shape& input) { assert(input.standard()); auto t = make_tensor(input); fp = make_fusion_plan(t); assert(fp); keep_alive(std::move(t)); } bool empty() const { return fp == nullptr; } op_t operator[](std::size_t i) const { assert(fp); op_t result; auto status = miopenFusionPlanGetOp(fp.get(), i, &result); if(status != miopenStatusSuccess) MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i)); return result; } auto get() const { assert(fp); return fp.get(); } op_t create_bias(const shape& bias) { assert(fp); op_t result; auto b = shape{bias.type(), {1, bias.lens().at(1), 1, 1}}; auto t = keep_alive(make_tensor(b)); auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get()); if(status != miopenStatusSuccess) MIGRAPHX_THROW("Creating operator failed"); return result; } op_t create_relu() { assert(fp); op_t result; auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU); if(status != miopenStatusSuccess) MIGRAPHX_THROW("Creating operator failed"); return result; } op_t create_conv(const op::convolution& op, const shape& weights) { assert(fp); op_t result; auto cd = keep_alive(make_conv(op)); auto t = keep_alive(make_tensor(weights)); auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get()); if(status != miopenStatusSuccess) MIGRAPHX_THROW("Creating operator failed"); return result; } shape get_workspace(context&) { // assert(fp); // TODO: Use zero workspace for now std::size_t ws_size = 0; // int algo_count = 1; // miopenConvFwdAlgorithm_t algo; // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo); // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size, // algo); return shape{shape::int8_type, {ws_size}}; } bool compile(context& ctx) { assert(fp); return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) == miopenStatusSuccess; } argument execute(context& ctx, const fused_operator_args& fargs, const argument& x, const argument& y) const { assert(fp); auto x_td = make_tensor(x.get_shape()); auto y_td = make_tensor(y.get_shape()); auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(), fp.get(), x_td.get(), x.implicit(), y_td.get(), y.implicit(), fargs.get()); if(status != miopenStatusSuccess) MIGRAPHX_THROW("Failed to execute fusion plan"); return y; } }; const std::unordered_set& get_supported_archs() { static std::unordered_set supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"}; return supported_archs; } MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins) { auto&& s = ins->get_shape(); return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0; } MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins) { const auto device_name = trim(split_string(get_device_name(), ':').front()); if(not contains(get_supported_archs(), device_name)) return false; if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{})) return false; if(ins->name() != "gpu::convolution") return false; if(ins->get_shape().type() != shape::float_type) return false; auto wei = ins->inputs().at(1)->get_shape(); assert(wei.lens().size() == 4); auto conv = any_cast(ins->get_operator()); if(conv.op.group > 1) return false; if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd) return false; // Do not fuse non-symmetric input auto input_lens = ins->inputs().at(0)->get_shape().lens(); if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3]) return false; auto op = conv.op; // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and wei.lens()[3] != 3 and contains({{1, 1}}, op.stride)) return false; return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation); } struct hip_triadd : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_triadd) struct hip_triadd_clip : quinary_device { }; MIGRAPHX_REGISTER_OP(hip_triadd_clip) struct hip_add_clip : quaternary_device { }; MIGRAPHX_REGISTER_OP(hip_add_clip) struct hip_triadd_relu : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_triadd_relu) struct hip_triadd_sigmoid : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid) struct hip_triadd_tanh : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_triadd_tanh) struct hip_add_relu : binary_device { }; MIGRAPHX_REGISTER_OP(hip_add_relu) struct hip_add_sigmoid : binary_device { }; MIGRAPHX_REGISTER_OP(hip_add_sigmoid) struct hip_add_tanh : binary_device { }; MIGRAPHX_REGISTER_OP(hip_add_tanh) struct hip_layernorm : unary_device { // Empty finalize to skip dimension reduction void finalize(context&, const shape&, const std::vector&) {} }; MIGRAPHX_REGISTER_OP(hip_layernorm) struct hip_triadd_layernorm : ternary_device { // Empty finalize to skip dimension reduction void finalize(context&, const shape&, const std::vector&) {} }; MIGRAPHX_REGISTER_OP(hip_triadd_layernorm) struct hip_gelu : unary_device { }; MIGRAPHX_REGISTER_OP(hip_gelu) struct hip_add_gelu : binary_device { }; MIGRAPHX_REGISTER_OP(hip_add_gelu) struct hip_gelu_new : unary_device { }; MIGRAPHX_REGISTER_OP(hip_gelu_new) struct hip_add_gelu_new : binary_device { }; MIGRAPHX_REGISTER_OP(hip_add_gelu_new) struct hip_mul_add : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_mul_add) struct hip_mul_add_relu : ternary_device { }; MIGRAPHX_REGISTER_OP(hip_mul_add_relu) void move_broadcasted_back(std::vector& args) { // Ensure the last arguments is the broadcasted one auto last = std::prev(args.end()); auto it = std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); }); if(it != last) std::swap(*it, *std::prev(last)); } void move_standard_front(std::vector& args) { // Ensure the first arguments is the standard one auto last = std::prev(args.end()); auto it = std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); }); if(it != last) std::swap(*it, args.front()); } auto gpu_name(const std::string& s) { return match::name("gpu::" + s); } struct find_layernorm { auto matcher() const { return match::layernorm(&gpu_name); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto x_ins = r.instructions["x"]; auto args = ins->inputs(); // We dont fuse for non-standard layouts if(not x_ins->get_shape().standard()) return; auto relements = x_ins->get_shape().lens().back(); if(relements > 1024 or (relements % 4 != 0 and relements > 256)) return; m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back()); } }; struct find_triadd_layernorm { auto matcher() const { return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")( match::used_once(), match::all_of[match::inputs()](match::standard_shape())))); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto triadd = ins->inputs().front(); m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs()); } }; struct find_gelu { auto matcher() const { return match::gelu_erf(&gpu_name); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto x_ins = r.instructions["x"]; auto args = ins->inputs(); m.replace_instruction(ins, hip_gelu{}, x_ins, args.back()); } }; struct find_add_gelu { auto matcher() const { return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add"))); } void apply(module& m, const match::matcher_result& r) const { auto add_ins = r.instructions["add"]; auto ins = r.result; auto args = add_ins->inputs(); move_standard_front(args); move_broadcasted_back(args); args.back() = ins->inputs().back(); m.replace_instruction(ins, hip_add_gelu{}, args); } }; struct find_gelu_new { bool fast_math = true; auto matcher() const { return match::gelu_tanh(&gpu_name); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto x_ins = r.instructions["x"]; auto args = ins->inputs(); if(fast_math) m.replace_instruction(ins, hip_gelu{}, x_ins, args.back()); else m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back()); } }; struct find_add_gelu_new { auto matcher() const { return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add"))); } void apply(module& m, const match::matcher_result& r) const { auto add_ins = r.instructions["add"]; auto ins = r.result; auto args = add_ins->inputs(); move_standard_front(args); move_broadcasted_back(args); args.back() = ins->inputs().back(); m.replace_instruction(ins, hip_add_gelu_new{}, args); } }; struct find_add_clip { auto matcher() const { return match::name(std::unordered_set{"gpu::clip", "gpu::clipped_relu"})( match::arg(0)(match::any_of(match::name("gpu::add"), match::name("gpu::triadd"), match::any_of[match::inputs()](match::standard_shape())) .bind("add"))); } void apply(module& m, const match::matcher_result& r) const { auto add_ins = r.instructions["add"]; auto ins = r.result; auto ins_args = ins->inputs(); auto add_args = add_ins->inputs(); move_standard_front(add_args); move_broadcasted_back(add_args); // Use the allocation from the clip operator add_args.pop_back(); add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end()); if(add_ins->name() == "gpu::add") m.replace_instruction(ins, hip_add_clip{}, add_args); else if(add_ins->name() == "gpu::triadd") m.replace_instruction(ins, hip_triadd_clip{}, add_args); } }; struct find_add_unary { std::string op_name; operation binary_add_op; operation ternary_add_op; auto matcher() const { return match::name(op_name)(match::arg(0)( match::used_once(), match::any_of(match::name("gpu::add"), match::name("gpu::triadd"), match::any_of(match::name("@literal"), match::any_of[match::inputs()](match::standard_shape()))) .bind("add"))); } void apply(module& m, const match::matcher_result& r) const { auto add_ins = r.instructions["add"]; auto ins = r.result; auto args = add_ins->inputs(); move_standard_front(args); move_broadcasted_back(args); // Use the allocation from the relu operator args.back() = ins->inputs().back(); if(add_ins->name() == "gpu::add") m.replace_instruction(ins, binary_add_op, args); else if(add_ins->name() == "gpu::triadd") m.replace_instruction(ins, ternary_add_op, args); } }; struct find_triadd { auto matcher() const { return match::name("gpu::add")(match::either_arg(0, 1)( match::name("gpu::add")(match::used_once()).bind("add"), match::any(match::any_of(match::name("@literal"), match::any_of[match::inputs()](match::standard_shape()))) .bind("input"))); } void apply(module& m, const match::matcher_result& r) const { auto add_ins = r.instructions["add"]; auto input_ins = r.instructions["input"]; auto ins = r.result; auto args = add_ins->inputs(); auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); }; if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2) return; args.insert(args.begin(), input_ins); move_standard_front(args); move_broadcasted_back(args); args.back() = ins->inputs().back(); m.replace_instruction(ins, hip_triadd{}, args); } }; struct find_mul_add { auto matcher() const { return match::name("gpu::add")(match::either_arg(0, 1)( match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b"))); } void apply(module& m, const match::matcher_result& r) const { auto mul_ins = r.instructions["mul"]; auto b_ins = r.instructions["b"]; auto ins = r.result; auto args = mul_ins->inputs(); assert(mul_ins != b_ins); move_standard_front(args); move_broadcasted_back(args); args.insert(std::prev(args.end()), b_ins); args.back() = ins->inputs().back(); m.replace_instruction(ins, hip_mul_add{}, args); } }; struct find_mul_add_relu { auto matcher() const { return match::name("gpu::relu")( match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add"))); } void apply(module& m, const match::matcher_result& r) const { auto mul_add_ins = r.instructions["mul_add"]; auto ins = r.result; auto args = mul_add_ins->inputs(); // Use the allocation from the relu operator args.back() = ins->inputs().back(); m.replace_instruction(ins, hip_mul_add_relu{}, args); } }; struct miopen_fusion { struct fuse_op_data { operation op; float alpha = 1; float beta = 0; }; struct fuse_op : fuse_op_data, reflect_equality, reflect_stream { template static auto reflect(Self& self, F f) { return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta")); } }; std::vector ops = {}; fusion f = {}; std::function&)> execute; template static auto reflect(Self& self, F f) { return pack(f(self.ops, "ops")); } std::ptrdiff_t output_alias(const std::vector& shapes) const { return shapes.size() - 1; } value compile(context& ctx, const shape&, std::vector inputs) { // Compensate for allocation inputs.pop_back(); std::size_t i = 0; f = fusion(inputs[i]); i++; std::vector&)>> invokers; for(auto&& fop : ops) { if(i > inputs.size()) { f = {}; return {}; } if(fop.op.name() == "convolution") { auto* mop = f.create_conv(any_cast(fop.op), inputs[i]); invokers.push_back( [=](const fused_operator_args& fargs, const std::vector& args) { miopenSetOpArgsConvForward( fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit()); }); i++; } else if(fop.op.name() == "add") { auto* mop = f.create_bias(inputs[i]); invokers.push_back( [=](const fused_operator_args& fargs, const std::vector& args) { miopenSetOpArgsBiasForward( fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit()); }); i++; } else if(fop.op.name() == "relu") { auto* mop = f.create_relu(); invokers.push_back([=](const fused_operator_args& fargs, const std::vector&) { miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0); }); } else { f = {}; return {}; } } if(not f.compile(ctx)) { f = {}; return {}; } execute = [invokers](context& c, const fusion& ff, const std::vector& args) { auto fargs = make_fused_args(); for(auto&& invoker : invokers) invoker(fargs, args); ff.execute(c, fargs, args.front(), args.back()); }; return {{"workspace", f.get_workspace(ctx).bytes()}}; } void finalize(context& ctx, const shape& output_shape, const std::vector& inputs) { if(not f.empty()) return; auto v = compile(ctx, output_shape, inputs); if(not v.is_object()) MIGRAPHX_THROW("Failed to compile fusion plan"); } std::string name() const { return "gpu::miopen_fusion"; } shape compute_shape(const std::vector& inputs) const { if(ops.empty()) return {}; // TODO: Check number of arguments return ops.front().op.compute_shape({inputs[0], inputs[1]}); } argument compute(context& ctx, const shape&, const std::vector& args) const { execute(ctx, f, args); return args.back(); } }; struct miopen_conv_bias { op::convolution op; fusion fp = {}; fusion::op_t conv = {}; fusion::op_t bias = {}; template static auto reflect(Self& self, F f) { return op::convolution::reflect(self.op, f); } std::string name() const { return "gpu::conv_bias"; } shape compute_shape(const std::vector& inputs) const { check_shapes{inputs, *this}.has(5); // TODO: Check slices return op.normalize_compute_shape({inputs.at(0), inputs.at(1)}); } argument compute(context& ctx, const shape&, const std::vector& args) const { auto fargs = make_fused_args(); float alpha = 1; float beta = 0; miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit()); miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit()); return fp.execute(ctx, fargs, args[0], args[4]); } void finalize(context& ctx, const shape&, const std::vector& inputs) { fp = fusion(inputs[0]); conv = fp.create_conv(op, inputs[1]); bias = fp.create_bias(inputs[3]); if(not fp.compile(ctx)) MIGRAPHX_THROW("Failed to compile fusion plan"); } shape get_workspace(context& ctx) { return fp.get_workspace(ctx); } std::ptrdiff_t output_alias(const std::vector& shapes) const { return shapes.size() - 1; } }; MIGRAPHX_REGISTER_OP(miopen_conv_bias) struct miopen_conv_bias_relu { op::convolution op; fusion fp = {}; fusion::op_t conv = {}; fusion::op_t bias = {}; fusion::op_t relu = {}; template static auto reflect(Self& self, F f) { return op::convolution::reflect(self.op, f); } std::string name() const { return "gpu::conv_bias_relu"; } shape compute_shape(const std::vector& inputs) const { check_shapes{inputs, *this}.has(5); // TODO: Check slices return op.normalize_compute_shape({inputs.at(0), inputs.at(1)}); } argument compute(context& ctx, const shape&, const std::vector& args) const { auto fargs = make_fused_args(); float alpha = 1; float beta = 0; miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit()); miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit()); miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0); return fp.execute(ctx, fargs, args[0], args[4]); } void finalize(context& ctx, const shape&, const std::vector& inputs) { fp = fusion(inputs[0]); conv = fp.create_conv(op, inputs[1]); bias = fp.create_bias(inputs[3]); relu = fp.create_relu(); fp.compile(ctx); } shape get_workspace(context& ctx) { return fp.get_workspace(ctx); } std::ptrdiff_t output_alias(const std::vector& shapes) const { return shapes.size() - 1; } }; MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu) template auto conv_bias(Ms... ms) { return match::name("gpu::add")( match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"), fusable_conv(match::used_once()).bind("conv")), ms...); } template void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r) { auto conv_ins = r.instructions["conv"]; auto bias_ins = r.instructions["bias"]; auto ins = r.result; auto input_ins = conv_ins->inputs().at(0); auto weights_ins = conv_ins->inputs().at(1); auto conv_op = any_cast(conv_ins->get_operator()).op; auto alloc_ins = ins->inputs().back(); auto old_ws_ins = conv_ins->inputs().at(2); Op cb{conv_op}; // TODO: Insert ws allocation auto ws = cb.get_workspace(ctx); (void)ws; m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins); } inline auto precompile_name(std::string s) // NOLINT { return match::make_basic_pred_matcher([=](instruction_ref ins) { if(ins->name() != "gpu::precompile_op") return false; auto op = from_value(ins->get_operator().to_value().at("op")); return (op.name() == s); }); } template auto conv_bias_pointwise(Ms... ms) { return precompile_name("pointwise")( match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"), fusable_conv(match::used_once()).bind("conv")), ms...); } struct find_conv_bias { context* ctx = nullptr; auto matcher() const { return conv_bias(match::none_of( match::output(match::name(std::unordered_set{"gpu::relu"})))); } void apply(module& m, const match::matcher_result& r) const { apply_conv_bias(*ctx, m, r); } }; struct find_conv_bias_relu { context* ctx = nullptr; auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); } void apply(module& m, const match::matcher_result& r) const { apply_conv_bias(*ctx, m, r); } }; struct find_conv_pointwise { context* ctx = nullptr; auto matcher() const { return precompile_name("pointwise")( match::nargs(3), match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"), fusable_conv(match::used_once()).bind("conv"))); } void apply(module& m, const match::matcher_result& r) const { auto conv_ins = r.instructions["conv"]; auto bias_ins = r.instructions["bias"]; auto ins = r.result; auto input_ins = conv_ins->inputs().at(0); auto weights_ins = conv_ins->inputs().at(1); auto conv_op = any_cast(conv_ins->get_operator()).op; auto alloc_ins = ins->inputs().back(); module_ref pm = ins->module_inputs().front(); miopen_fusion op{}; op.ops.push_back({{conv_op}}); for(auto&& i : *pm) { if(i.name()[0] == '@') continue; op.ops.push_back({{i.get_operator()}}); } std::vector inputs = {input_ins, weights_ins, bias_ins, alloc_ins}; auto v = op.compile(*ctx, ins->get_shape(), to_shapes(inputs)); if(not v.is_object()) return; m.replace_instruction(ins, op, inputs); } }; struct find_gemm_add { auto matcher() const { return match::name("gpu::add")( match::all_of[match::inputs()](match::standard_shape()), match::either_arg(0, 1)(match::used_once().bind("c"), match::name("gpu::gemm")(match::nargs(3)).bind("gemm"))); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto gemm_ins = r.instructions["gemm"]; auto c_ins = r.instructions["c"]; auto gemm = any_cast>(gemm_ins->get_operator()); // Already fused gemm if(not float_equal(gemm.beta, 0)) return; auto inputs = gemm_ins->inputs(); inputs.pop_back(); auto copy_ins = c_ins; // Insert copy if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty()) { copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back()); } inputs.push_back(copy_ins); inputs.push_back(copy_ins); gemm.beta = 1; m.replace_instruction(ins, gemm, inputs); } }; auto pointwise_name(const std::string& s) { return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) { module_ref pm = ins->module_inputs().front(); auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) { return i.name() == s; }); if(n != 1) return false; return std::all_of(pm->begin(), pm->end(), [&](auto& i) { return starts_with(i.name(), "@") or i.name() == s; }); })); } struct find_gemm_pointwise { auto matcher() const { return pointwise_name("add")( match::nargs(3), match::all_of[match::inputs()](match::standard_shape()), match::either_arg(0, 1)(match::used_once().bind("c"), match::name("gpu::gemm")(match::nargs(3)).bind("gemm"))); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto gemm_ins = r.instructions["gemm"]; auto c_ins = r.instructions["c"]; auto gemm = any_cast>(gemm_ins->get_operator()); // Already fused gemm if(not float_equal(gemm.beta, 0)) return; auto inputs = gemm_ins->inputs(); inputs.pop_back(); inputs.push_back(c_ins); inputs.push_back(ins->inputs().back()); gemm.beta = 1; m.replace_instruction(ins, gemm, inputs); } }; struct find_commutative_broadcast { auto matcher() const { return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape())); } void apply(module& m, const match::matcher_result& r) const { auto ins = r.result; auto args = ins->inputs(); move_broadcasted_back(args); m.replace_instruction(ins, ins->get_operator(), args); } }; void fuse_ops::apply(module& m) const { match::find_matches(m, find_gelu{}, find_gelu_new{fast_math}); run_passes(m, {dead_code_elimination{}}); match::find_matches(m, find_triadd{}); match::find_matches(m, find_layernorm{}, find_conv_pointwise{ctx}, find_conv_bias_relu{ctx}, find_conv_bias{ctx}, find_add_gelu{}, find_add_gelu_new{}, find_mul_add{}, find_mul_add_relu{}, find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}}, find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}}, find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}}, find_add_clip{}); run_passes(m, {dead_code_elimination{}}); match::find_matches(m, find_triadd_layernorm{}, find_gemm_add{}, find_gemm_pointwise{}, find_commutative_broadcast{}); } } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx