/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { rocblas_datatype get_type(shape::type_t type) { switch(type) { case shape::double_type: return rocblas_datatype_f64_r; case shape::float_type: return rocblas_datatype_f32_r; case shape::half_type: return rocblas_datatype_f16_r; case shape::int8_type: return rocblas_datatype_i8_r; case shape::uint8_type: return rocblas_datatype_u8_r; case shape::int32_type: return rocblas_datatype_i32_r; case shape::uint32_type: return rocblas_datatype_u32_r; case shape::tuple_type: case shape::bool_type: case shape::uint16_type: case shape::int16_type: case shape::int64_type: case shape::uint64_type: MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!"); } MIGRAPHX_THROW("ROCBLAS_GEMM: data type not supported!"); } void blas_shape(const shape& s) { if(s.lens().size() < 2) return; if(std::none_of(s.strides().end() - 2, s.strides().end(), [&](auto i) { return i == 1; })) MIGRAPHX_THROW("GPU_GEMM: needs to have one matrix stride as 1"); if(s.lens().size() < 3) return; shape batch_shape{s.type(), {s.lens().begin(), s.lens().end() - 2}, {s.strides().begin(), s.strides().end() - 2}}; auto batch_shapes = reduce_dims({batch_shape}); if(batch_shapes.front().lens().size() != 1) MIGRAPHX_THROW("GPU_GEMM: Batch dimension is not collapsible"); } shape transpose_batch(const shape& s, unsigned trans_batch) { if(trans_batch == 0) return s; if(s.lens().size() < 3) return s; auto batch = s.lens().size() - 3; std::vector perm(s.lens().size()); std::iota(perm.begin(), perm.end(), 0); std::swap(perm[batch], perm[batch + trans_batch]); return shape::from_permutation(s.type(), s.lens(), perm); } template R rocblas_invoke(R (*f)(Ts...), Us... xs) { if constexpr(sizeof...(Ts) == sizeof...(Us)) return f(xs...); else return f(xs..., nullptr, nullptr); } static bool is_transposed(const shape& s) { if(not s.transposed()) return false; return s.strides().back() != 1; } static rocblas_int get_batch_stride(const argument& a) { return a.get_shape().strides()[a.get_shape().strides().size() - 3]; } template void gemm_impl(context& ctx, const shape& output_shape, const std::vector& args, T alpha, T beta, bool int8_x4_format, bool compute_fp32) { const bool is_3inputs = (args.size() == 4); if(!is_3inputs) { beta = 0; } bool transa = is_transposed(args[0].get_shape()); bool transb = is_transposed(args[1].get_shape()); auto n_dim = output_shape.lens().size(); auto dim_1 = n_dim - 1; auto dim_0 = n_dim - 2; rocblas_int lda = args[0].get_shape().strides()[transa ? dim_1 : dim_0]; rocblas_int ldb = args[1].get_shape().strides()[transb ? dim_1 : dim_0]; rocblas_int ldc = args[2].get_shape().strides()[dim_0]; rocblas_int ldd = is_3inputs ? args[3].get_shape().strides()[dim_0] : ldc; rocblas_datatype arg_type = get_type(args[0].get_shape().type()); auto output_type = arg_type; if(output_type == rocblas_datatype_i8_r) { output_type = rocblas_datatype_i32_r; } auto compute_type = output_type; if(compute_fp32) { if(arg_type == rocblas_datatype_f16_r) compute_type = rocblas_datatype_f32_r; } #if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38 rocblas_gemm_flags flag = int8_x4_format ? rocblas_gemm_flags_pack_int8x4 : rocblas_gemm_flags_none; #else (void)int8_x4_format; int flag = 0; #endif auto a_lens = args[0].get_shape().lens(); auto b_lens = args[1].get_shape().lens(); output_shape.visit_type([&](auto as) { auto alpha_r = as(alpha); auto beta_r = as(beta); // use void pointer to select different data type if using fp32 mode void* alpha_v = &alpha_r; void* beta_v = &beta_r; if(compute_fp32) { alpha_v = α beta_v = β } auto out_lens = output_shape.lens(); rocblas_int m = out_lens[dim_0]; rocblas_int n = out_lens[dim_1]; rocblas_int k = args[0].get_shape().lens()[dim_1]; auto to_pointer = [&](auto&& arg) { return as.from(arg.data()); }; if(args[0].get_shape().type() == shape::int8_type and (k % 4) != 0 and int8_x4_format) { MIGRAPHX_THROW("ROCBLAS_GEMM: k size of int8 type input must be mutlple of 4!"); } auto num_matrices = std::accumulate( out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies()); if(num_matrices == 1) { // the rocblas_gemm API handles inputs and output matrices as // column-major format. When doing a C = A * B, we actually do // C^T = (B^T) * (A^T). That is the reason we input args[1] as // A and args[0] as B in calling the rocblas_gemm. rocblas_invoke(&rocblas_gemm_ex, ctx.get_stream().get_rocblas(), transb ? rocblas_operation_transpose : rocblas_operation_none, transa ? rocblas_operation_transpose : rocblas_operation_none, n, m, k, alpha_v, to_pointer(args.at(1)), arg_type, ldb, to_pointer(args.at(0)), arg_type, lda, beta_v, to_pointer(args[2]), output_type, ldc, is_3inputs ? to_pointer(args[3]) : to_pointer(args[2]), output_type, ldd, compute_type, rocblas_gemm_algo_standard, 0, flag); } else { auto a_stride = get_batch_stride(args[0]); auto b_stride = get_batch_stride(args[1]); auto c_stride = get_batch_stride(args[2]); auto d_stride = is_3inputs ? get_batch_stride(args[3]) : c_stride; rocblas_invoke(&rocblas_gemm_strided_batched_ex, ctx.get_stream().get_rocblas(), transb ? rocblas_operation_transpose : rocblas_operation_none, transa ? rocblas_operation_transpose : rocblas_operation_none, n, m, k, alpha_v, to_pointer(args.at(1)), arg_type, ldb, b_stride, to_pointer(args.at(0)), arg_type, lda, a_stride, beta_v, to_pointer(args[2]), output_type, ldc, c_stride, is_3inputs ? to_pointer(args[3]) : to_pointer(args[2]), output_type, ldd, d_stride, num_matrices, compute_type, rocblas_gemm_algo_standard, 0, flag); } }); } void gemm(context& ctx, const shape& output_shape, const std::vector& args, float alpha, float beta, bool int8_x4_format, bool compute_fp32) { gemm_impl(ctx, output_shape, args, alpha, beta, int8_x4_format, compute_fp32); } void gemm(context& ctx, const shape& output_shape, const std::vector& args, int32_t alpha, int32_t beta, bool int8_x4_format, bool compute_fp32) { gemm_impl(ctx, output_shape, args, alpha, beta, int8_x4_format, compute_fp32); } } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx