#include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { template static auto compute_end_dim(Iterator start, Iterator last, std::size_t dim) { std::size_t x = 1; auto it = std::find_if(start, last, [&](auto i) { x *= i; return x > dim; }); if(x < dim) return start; return it; } template static auto elements(const Range& r) { return std::accumulate(r.begin(), r.end(), std::size_t{1}, std::multiplies<>{}); } struct common_dim_state { common_dim_state(const std::vector& pdims, std::vector>& paxes_map) : dims(&pdims), axes_map(&paxes_map), it(dims->begin()) {} const std::vector* dims = nullptr; std::vector>* axes_map = nullptr; std::vector::const_iterator it{}; std::size_t rem = 1; std::size_t get() const { return *it / rem; } bool is_end() const { return it == dims->end(); } void next(std::size_t i = 1) { it += i; } auto dims_for(std::size_t d) const { auto dim_end = compute_end_dim(it, dims->end(), d); return range(it, dim_end); } void add_axes(std::size_t naxes, std::size_t start) { auto axes = compute_axes(naxes, start); axes_map->push_back(std::move(axes)); } void add_multi_axes(std::size_t naxes, std::size_t start) { auto axes = compute_axes(naxes, start); std::transform(axes.begin(), axes.end(), std::back_inserter(*axes_map), [&](auto axis) -> std::vector { return {axis}; }); } std::vector compute_axes(std::size_t naxes, std::size_t start) const { if (rem != 1) { assert(start > 0); naxes++; start--; } std::vector axes(naxes); std::iota(axes.begin(), axes.end(), start); return axes; } }; static bool commpute_common_dim(std::vector& cd_dims, common_dim_state& state1, common_dim_state& state2) { assert(state1.get() <= state2.get()); auto d2 = state2.get(); auto dims = state1.dims_for(d2); auto n = elements(dims); auto naxes = distance(dims); // If not divisible then we can't compute a common dim if((d2 % n) != 0) return true; auto rem = d2 / n; state1.add_multi_axes(naxes, cd_dims.size()); state2.add_axes(rem != 1 ? naxes + 1 : naxes, cd_dims.size()); state1.rem = rem; state2.rem = 1; cd_dims.insert(cd_dims.end(), dims.begin(), dims.end()); if(state1.rem != 1) cd_dims.push_back(state1.rem); state1.next(distance(dims)); state2.next(); return false; } common_dims common_dims::compute(const std::vector& dims1, const std::vector& dims2) { assert(elements(dims1) == elements(dims2)); common_dims cd; common_dim_state state1{dims1, cd.axes_map1}; common_dim_state state2{dims2, cd.axes_map2}; while(not state1.is_end() and not state2.is_end()) { auto d1 = state1.get(); auto d2 = state2.get(); if(d1 <= d2) { if (commpute_common_dim(cd.dims, state1, state2)) return {}; } else // if(d1 > d2) { if (commpute_common_dim(cd.dims, state2, state1)) return {}; } } assert(elements(dims1) == elements(cd.dims)); return cd; } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx