/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { static std::vector& get_quantizable_type() { static std::vector quantable_types = { shape::float_type, shape::double_type, shape::half_type}; return quantable_types; } void quantize_8bits_pass::apply(module& m) const // NOLINT { const auto& quantizable_types = get_quantizable_type(); for(auto ins : iterator_for(m)) { if(ins->name() != "capture") continue; auto op_val = ins->get_operator().to_value(); assert(op_val.contains("ins_index")); auto param_index = op_val.at("ins_index").to(); auto param = quant_params[param_index]; auto input = ins->inputs().front(); auto s = input->get_shape(); if(contains(quantizable_types, s.type()) and s.type() != precision) { auto zero_point = m.add_literal(migraphx::literal{migraphx::shape{precision}, {param.second}}); auto scale = m.add_literal(literal({s.type()}, {1.0f / param.first})); const auto& lens = s.lens(); scale = m.insert_instruction(ins, make_op("multibroadcast", {{"out_lens", lens}}), scale); zero_point = m.insert_instruction( ins, make_op("multibroadcast", {{"out_lens", lens}}), zero_point); auto q_in = m.insert_instruction(ins, make_op("quantizelinear"), input, scale, zero_point); auto dq_in = m.insert_instruction(ins, make_op("dequantizelinear"), q_in, scale, zero_point); m.replace_instruction(ins, dq_in); } } } void capture_arguments_pass::apply(module& m) const // NOLINT { assert(param_index != nullptr); const auto& quantizable_types = get_quantizable_type(); for(auto ins : iterator_for(m)) { if((not contains(ins_names, ins->name())) or (ins->name() == "convert")) { continue; } auto inputs = ins->inputs(); std::vector new_args; for(auto input : inputs) { if(contains(quantizable_types, input->get_shape().type())) { auto new_in = m.insert_instruction(ins, op::capture{(*param_index)++, f}, input); new_args.push_back(new_in); } else { new_args.push_back(input); } } m.replace_instruction(ins, ins->get_operator(), new_args); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx