/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { namespace device { void prefix_scan_sum(hipStream_t stream, const argument& result, const argument& arg, int32_t axis, bool exclusive, bool reverse) { const index_int max_block_size = 256; const index_int n = arg.get_shape().lens()[axis]; auto rlens = result.get_shape().lens(); rlens[axis] = 1; hip_visit_all(result, arg, result.get_shape().with_lens(rlens))( [=](auto output, auto input, auto rshape) { const index_int block_size = compute_block_size(rshape.elements(), max_block_size); if(reverse and exclusive) { gs_launch(stream, rshape.elements() * block_size, block_size)( [=](auto i, auto idx) __device__ { const auto ridx = rshape.multi(i / block_size); auto compute_idx = [&](auto j) { auto k = ridx; k[axis] = j; return k; }; block_scan( idx, sum{}, 0, n, reverse_scan(n, [&](auto j) { return input[compute_idx(j)]; }), reverse_scan(n, [&](auto j, auto x) { if(j == n - 1) output[compute_idx(j)] = 0; if(j > 0) output[compute_idx(j - 1)] = x; })); }); } else if(reverse) { gs_launch(stream, rshape.elements() * block_size, block_size)( [=](auto i, auto idx) __device__ { const auto ridx = rshape.multi(i / block_size); auto compute_idx = [&](auto j) { auto k = ridx; k[axis] = j; return k; }; block_scan( idx, sum{}, 0, n, reverse_scan(n, [&](auto j) { return input[compute_idx(j)]; }), reverse_scan(n, [&](auto j, auto x) { output[compute_idx(j)] = x; })); }); } else if(exclusive) { gs_launch(stream, rshape.elements() * block_size, block_size)( [=](auto i, auto idx) __device__ { const auto ridx = rshape.multi(i / block_size); auto compute_idx = [&](auto j) { auto k = ridx; k[axis] = j; return k; }; block_scan( idx, sum{}, 0, n, [&](auto j) { return input[compute_idx(j)]; }, [&](auto j, auto x) { auto k = j + 1; if(j == 0) output[compute_idx(0)] = 0; if(k < n) output[compute_idx(k)] = x; }); }); } else { gs_launch(stream, rshape.elements() * block_size, block_size)( [=](auto i, auto idx) __device__ { const auto ridx = rshape.multi(i / block_size); auto compute_idx = [&](auto j) { auto k = ridx; k[axis] = j; return k; }; block_scan( idx, sum{}, 0, n, [&](auto j) { return input[compute_idx(j)]; }, [&](auto j, auto x) { output[compute_idx(j)] = x; }); }); } }); } } // namespace device } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx